| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemii | Structured version Visualization version GIF version | ||
| Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| Ref | Expression |
|---|---|
| ballotlemii | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 12633 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 2 | ax-1ne0 11078 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | eqnetrri 2996 | . . . . 5 ⊢ (0 + 1) ≠ 0 |
| 4 | 3 | neii 2927 | . . . 4 ⊢ ¬ (0 + 1) = 0 |
| 5 | ballotth.m | . . . . . . . . 9 ⊢ 𝑀 ∈ ℕ | |
| 6 | ballotth.n | . . . . . . . . 9 ⊢ 𝑁 ∈ ℕ | |
| 7 | ballotth.o | . . . . . . . . 9 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 8 | ballotth.p | . . . . . . . . 9 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 9 | ballotth.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 10 | eldifi 4082 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
| 11 | 1nn 12139 | . . . . . . . . . 10 ⊢ 1 ∈ ℕ | |
| 12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
| 13 | 5, 6, 7, 8, 9, 10, 12 | ballotlemfp1 34460 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)))) |
| 14 | 13 | simprd 495 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1))) |
| 15 | 14 | imp 406 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)) |
| 16 | 1m1e0 12200 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 17 | 16 | fveq2i 6825 | . . . . . . . 8 ⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
| 18 | 17 | oveq1i 7359 | . . . . . . 7 ⊢ (((𝐹‘𝐶)‘(1 − 1)) + 1) = (((𝐹‘𝐶)‘0) + 1) |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) + 1) = (((𝐹‘𝐶)‘0) + 1)) |
| 20 | 5, 6, 7, 8, 9 | ballotlemfval0 34464 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| 21 | 10, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
| 22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
| 23 | 22 | oveq1d 7364 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) + 1) = (0 + 1)) |
| 24 | 15, 19, 23 | 3eqtrrd 2769 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹‘𝐶)‘1)) |
| 25 | 24 | eqeq1d 2731 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((0 + 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
| 26 | 4, 25 | mtbii 326 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
| 27 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 28 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
| 29 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 30 | 5, 6, 7, 8, 9, 27, 28, 29 | ballotlemiex 34470 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 31 | 30 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
| 32 | 31 | ad2antrr 726 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
| 33 | fveqeq2 6831 | . . . . 5 ⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) | |
| 34 | 33 | adantl 481 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
| 35 | 32, 34 | mpbid 232 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
| 36 | 26, 35 | mtand 815 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
| 37 | 36 | neqned 2932 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∩ cin 3902 𝒫 cpw 4551 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 infcinf 9331 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 − cmin 11347 / cdiv 11777 ℕcn 12128 ℤcz 12471 ...cfz 13410 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: ballotlem1c 34476 |
| Copyright terms: Public domain | W3C validator |