| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemii | Structured version Visualization version GIF version | ||
| Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| Ref | Expression |
|---|---|
| ballotlemii | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 12750 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 2 | ax-1ne0 11198 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | eqnetrri 3003 | . . . . 5 ⊢ (0 + 1) ≠ 0 |
| 4 | 3 | neii 2934 | . . . 4 ⊢ ¬ (0 + 1) = 0 |
| 5 | ballotth.m | . . . . . . . . 9 ⊢ 𝑀 ∈ ℕ | |
| 6 | ballotth.n | . . . . . . . . 9 ⊢ 𝑁 ∈ ℕ | |
| 7 | ballotth.o | . . . . . . . . 9 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 8 | ballotth.p | . . . . . . . . 9 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 9 | ballotth.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 10 | eldifi 4106 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
| 11 | 1nn 12251 | . . . . . . . . . 10 ⊢ 1 ∈ ℕ | |
| 12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
| 13 | 5, 6, 7, 8, 9, 10, 12 | ballotlemfp1 34524 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)))) |
| 14 | 13 | simprd 495 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1))) |
| 15 | 14 | imp 406 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)) |
| 16 | 1m1e0 12312 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 17 | 16 | fveq2i 6879 | . . . . . . . 8 ⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
| 18 | 17 | oveq1i 7415 | . . . . . . 7 ⊢ (((𝐹‘𝐶)‘(1 − 1)) + 1) = (((𝐹‘𝐶)‘0) + 1) |
| 19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) + 1) = (((𝐹‘𝐶)‘0) + 1)) |
| 20 | 5, 6, 7, 8, 9 | ballotlemfval0 34528 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| 21 | 10, 20 | syl 17 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
| 22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
| 23 | 22 | oveq1d 7420 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) + 1) = (0 + 1)) |
| 24 | 15, 19, 23 | 3eqtrrd 2775 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹‘𝐶)‘1)) |
| 25 | 24 | eqeq1d 2737 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ((0 + 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
| 26 | 4, 25 | mtbii 326 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
| 27 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 28 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
| 29 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 30 | 5, 6, 7, 8, 9, 27, 28, 29 | ballotlemiex 34534 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 31 | 30 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
| 32 | 31 | ad2antrr 726 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
| 33 | fveqeq2 6885 | . . . . 5 ⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) | |
| 34 | 33 | adantl 481 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
| 35 | 32, 34 | mpbid 232 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
| 36 | 26, 35 | mtand 815 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
| 37 | 36 | neqned 2939 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 infcinf 9453 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 − cmin 11466 / cdiv 11894 ℕcn 12240 ℤcz 12588 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: ballotlem1c 34540 |
| Copyright terms: Public domain | W3C validator |