Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemii Structured version   Visualization version   GIF version

Theorem ballotlemii 33490
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemii ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemii
StepHypRef Expression
1 1e0p1 12715 . . . . . 6 1 = (0 + 1)
2 ax-1ne0 11175 . . . . . 6 1 ≠ 0
31, 2eqnetrri 3012 . . . . 5 (0 + 1) ≠ 0
43neii 2942 . . . 4 ¬ (0 + 1) = 0
5 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
6 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
7 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
8 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
9 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 eldifi 4125 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
11 1nn 12219 . . . . . . . . . 10 1 ∈ ℕ
1211a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
135, 6, 7, 8, 9, 10, 12ballotlemfp1 33478 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
1413simprd 496 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1)))
1514imp 407 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))
16 1m1e0 12280 . . . . . . . . 9 (1 − 1) = 0
1716fveq2i 6891 . . . . . . . 8 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
1817oveq1i 7415 . . . . . . 7 (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1)
1918a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1))
205, 6, 7, 8, 9ballotlemfval0 33482 . . . . . . . . 9 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2110, 20syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
2221adantr 481 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
2322oveq1d 7420 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) + 1) = (0 + 1))
2415, 19, 233eqtrrd 2777 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹𝐶)‘1))
2524eqeq1d 2734 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((0 + 1) = 0 ↔ ((𝐹𝐶)‘1) = 0))
264, 25mtbii 325 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ ((𝐹𝐶)‘1) = 0)
27 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
28 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
29 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
305, 6, 7, 8, 9, 27, 28, 29ballotlemiex 33488 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
3130simprd 496 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
3231ad2antrr 724 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
33 fveqeq2 6897 . . . . 5 ((𝐼𝐶) = 1 → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3433adantl 482 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3532, 34mpbid 231 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘1) = 0)
3626, 35mtand 814 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) = 1)
3736neqned 2947 1 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  {crab 3432  cdif 3944  cin 3946  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  infcinf 9432  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cmin 11440   / cdiv 11867  cn 12208  cz 12554  ...cfz 13480  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  ballotlem1c  33494
  Copyright terms: Public domain W3C validator