MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexvOLD Structured version   Visualization version   GIF version

Theorem equsexvOLD 2264
Description: Obsolete version of equsexv 2263 as of 18-Nov-2024. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalv.nf 𝑥𝜓
equsalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexvOLD (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem equsexvOLD
StepHypRef Expression
1 sbalex 2238 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 equsalv.nf . . 3 𝑥𝜓
3 equsalv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsalv 2262 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
51, 4bitri 274 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator