![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexv | Structured version Visualization version GIF version |
Description: Version of equsex 2425 with a disjoint variable condition, which does not require ax-13 2377. See equsexvw 2104 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2290. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalv.nf | ⊢ Ⅎ𝑥𝜓 |
equsalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexv | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 571 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ 𝜓)) |
3 | 2 | exbii 1944 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
4 | ax6ev 2074 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | equsalv.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | 19.41 2270 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜓)) |
7 | 4, 6 | mpbiran 701 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜓) |
8 | 3, 7 | bitri 267 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-nf 1880 |
This theorem is referenced by: sb56 2297 equsexhv 2316 cleljustALT2 2373 sb10f 2576 dprd2d2 18759 poimirlem25 33923 |
Copyright terms: Public domain | W3C validator |