MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexv Structured version   Visualization version   GIF version

Theorem equsexv 2266
Description: An equivalence related to implicit substitution. Version of equsex 2421 with a disjoint variable condition, which does not require ax-13 2375. See equsexvw 2002 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv 2265. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) Avoid ax-10 2139. (Revised by GG, 18-Nov-2024.)
Hypotheses
Ref Expression
equsalv.nf 𝑥𝜓
equsalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexv (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem equsexv
StepHypRef Expression
1 equsalv.nf . . 3 𝑥𝜓
2 equsalv.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32biimpa 476 . . 3 ((𝑥 = 𝑦𝜑) → 𝜓)
41, 3exlimi 2215 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → 𝜓)
51, 2equsalv 2265 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
6 equs4v 1997 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6sylbir 235 . 2 (𝜓 → ∃𝑥(𝑥 = 𝑦𝜑))
84, 7impbii 209 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1776  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781
This theorem is referenced by:  equsexhv  2291  cleljustALT2  2366  sb10f  2530  dprd2d2  20079  poimirlem25  37632
  Copyright terms: Public domain W3C validator