MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalv Structured version   Visualization version   GIF version

Theorem equsalv 2250
Description: An equivalence related to implicit substitution. Version of equsal 2410 with a disjoint variable condition, which does not require ax-13 2365. See equsalvw 1999 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv 2251. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
equsalv.nf 𝑥𝜓
equsalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalv (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem equsalv
StepHypRef Expression
1 equsalv.nf . . 3 𝑥𝜓
2119.23 2196 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ (∃𝑥 𝑥 = 𝑦𝜓))
3 equsalv.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43pm5.74i 271 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
54albii 1813 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
6 ax6ev 1965 . . 3 𝑥 𝑥 = 𝑦
76a1bi 362 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝑦𝜓))
82, 5, 73bitr4i 303 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-ex 1774  df-nf 1778
This theorem is referenced by:  equsexv  2251  equsexvOLD  2252  equsalhw  2279  sbiev  2302  sb6rfv  2347  nfabdwOLD  2921  bj-equsalhv  36191  ichnfimlem  46685
  Copyright terms: Public domain W3C validator