| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsalv | Structured version Visualization version GIF version | ||
| Description: An equivalence related to implicit substitution. Version of equsal 2422 with a disjoint variable condition, which does not require ax-13 2377. See equsalvw 2003 for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv 2268. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| equsalv.nf | ⊢ Ⅎ𝑥𝜓 |
| equsalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalv | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalv.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.23 2211 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 3 | equsalv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 6 | ax6ev 1969 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 8 | 2, 5, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: equsexv 2268 equsexvOLD 2269 equsalhw 2291 sbievOLD 2315 sb6rfv 2360 bj-equsalhv 36807 ichnfimlem 47450 |
| Copyright terms: Public domain | W3C validator |