MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsv Structured version   Visualization version   GIF version

Theorem equsv 2006
Description: If a formula does not contain a variable 𝑥, then it is equivalent to the corresponding prototype of substitution with a fresh variable (see sb6 2088). (Contributed by BJ, 23-Jul-2023.)
Assertion
Ref Expression
equsv (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem equsv
StepHypRef Expression
1 19.23v 1945 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ (∃𝑥 𝑥 = 𝑦𝜑))
2 ax6ev 1973 . . 3 𝑥 𝑥 = 𝑦
32a1bi 363 . 2 (𝜑 ↔ (∃𝑥 𝑥 = 𝑦𝜑))
41, 3bitr4i 277 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  equsalvw  2007  sb8v  2350
  Copyright terms: Public domain W3C validator