Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version |
Description: Version of equsalv 2259 with a disjoint variable condition, and of equsal 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2008. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
3 | 2 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
4 | equsv 2006 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜓) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: equsexvw 2008 equvelv 2034 sb6 2088 sbievw 2095 ax13lem2 2376 reu8 3668 el 5357 asymref2 6022 intirr 6023 fun11 6508 fv3 6792 fpwwe2lem11 10397 bj-dvelimdv 35035 bj-dvelimdv1 35036 undmrnresiss 41212 pm13.192 42028 |
Copyright terms: Public domain | W3C validator |