| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version | ||
| Description: Version of equsalv 2270 with a disjoint variable condition, and of equsal 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2006. (Contributed by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 3 | 2 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 4 | equsv 2004 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜓) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: equsexvw 2006 equvelv 2032 sb6 2088 sbievwOLD 2097 ax13lem2 2376 reu8 3687 el 5378 asymref2 6063 intirr 6064 fun11 6555 fv3 6840 elirrv 9483 fpwwe2lem11 10532 axreg 35125 axregscl 35126 bj-dvelimdv 36895 bj-dvelimdv1 36896 undmrnresiss 43696 pm13.192 44502 |
| Copyright terms: Public domain | W3C validator |