MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalvw Structured version   Visualization version   GIF version

Theorem equsalvw 2007
Description: Version of equsalv 2259 with a disjoint variable condition, and of equsal 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2008. (Contributed by BJ, 31-May-2019.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalvw (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsalvw
StepHypRef Expression
1 equsalvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21pm5.74i 270 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
32albii 1822 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
4 equsv 2006 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
53, 4bitri 274 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  equsexvw  2008  equvelv  2034  sb6  2088  sbievw  2095  ax13lem2  2376  reu8  3668  el  5357  asymref2  6022  intirr  6023  fun11  6508  fv3  6792  fpwwe2lem11  10397  bj-dvelimdv  35035  bj-dvelimdv1  35036  undmrnresiss  41212  pm13.192  42028
  Copyright terms: Public domain W3C validator