| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version | ||
| Description: Version of equsalv 2268 with a disjoint variable condition, and of equsal 2415 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2005. (Contributed by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 4 | equsv 2003 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜓) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equsexvw 2005 equvelv 2031 sb6 2086 sbievwOLD 2095 ax13lem2 2374 reu8 3693 el 5381 asymref2 6066 intirr 6067 fun11 6556 fv3 6840 elirrv 9489 fpwwe2lem11 10535 axreg 35068 axregscl 35069 bj-dvelimdv 36835 bj-dvelimdv1 36836 undmrnresiss 43587 pm13.192 44393 |
| Copyright terms: Public domain | W3C validator |