| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version | ||
| Description: Version of equsalv 2266 with a disjoint variable condition, and of equsal 2420 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2003. (Contributed by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 3 | 2 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 4 | equsv 2001 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜓) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: equsexvw 2003 equvelv 2029 sb6 2084 sbievwOLD 2093 ax13lem2 2379 reu8 3714 el 5409 asymref2 6103 intirr 6104 fun11 6606 fv3 6890 fpwwe2lem11 10647 bj-dvelimdv 36790 bj-dvelimdv1 36791 undmrnresiss 43553 pm13.192 44360 |
| Copyright terms: Public domain | W3C validator |