![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version |
Description: Version of equsalv 2290 with a disjoint variable condition, and of equsal 2424 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2104. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 2038 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) | |
2 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 263 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
4 | 3 | albii 1915 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
5 | ax6ev 2074 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
6 | 5 | a1bi 354 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
7 | 1, 4, 6 | 3bitr4i 295 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1651 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 |
This theorem depends on definitions: df-bi 199 df-ex 1876 |
This theorem is referenced by: equvelv 2132 ax13lem2 2381 reu8 3598 asymref2 5731 intirr 5732 fun11 6174 fpwwe2lem12 9751 bj-dvelimdv 33328 bj-dvelimdv1 33329 wl-clelv2-just 33868 undmrnresiss 38693 pm13.192 39392 |
Copyright terms: Public domain | W3C validator |