MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsalvw Structured version   Visualization version   GIF version

Theorem equsalvw 2003
Description: Version of equsalv 2268 with a disjoint variable condition, and of equsal 2425 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2004. (Contributed by BJ, 31-May-2019.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsalvw (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsalvw
StepHypRef Expression
1 equsalvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21pm5.74i 271 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
32albii 1817 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
4 equsv 2002 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
53, 4bitri 275 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  equsexvw  2004  equvelv  2030  sb6  2085  sbievwOLD  2094  ax13lem2  2384  reu8  3755  el  5457  asymref2  6149  intirr  6150  fun11  6652  fv3  6938  fpwwe2lem11  10710  bj-dvelimdv  36817  bj-dvelimdv1  36818  undmrnresiss  43566  pm13.192  44379
  Copyright terms: Public domain W3C validator