MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8v Structured version   Visualization version   GIF version

Theorem sb8v 2358
Description: Substitution of variable in universal quantifier. Version of sb8f 2359 with a disjoint variable condition replacing the nonfree hypothesis 𝑦𝜑, not requiring ax-12 2178. (Contributed by SN, 5-Dec-2024.)
Assertion
Ref Expression
sb8v (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sb8v
StepHypRef Expression
1 sb6 2085 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
21albii 1817 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥(𝑥 = 𝑦𝜑))
3 alcom 2160 . 2 (∀𝑦𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝑦(𝑥 = 𝑦𝜑))
4 equcom 2017 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
54imbi1i 349 . . . . 5 ((𝑥 = 𝑦𝜑) ↔ (𝑦 = 𝑥𝜑))
65albii 1817 . . . 4 (∀𝑦(𝑥 = 𝑦𝜑) ↔ ∀𝑦(𝑦 = 𝑥𝜑))
7 equsv 2002 . . . 4 (∀𝑦(𝑦 = 𝑥𝜑) ↔ 𝜑)
86, 7bitri 275 . . 3 (∀𝑦(𝑥 = 𝑦𝜑) ↔ 𝜑)
98albii 1817 . 2 (∀𝑥𝑦(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜑)
102, 3, 93bitrri 298 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  sbnf2  2364  sb8eulem  2601  cbvralsvw  3323  abv  3500  abvALT  3501  wl-sb8eutv  37533  sbcalf  38074
  Copyright terms: Public domain W3C validator