Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8v | Structured version Visualization version GIF version |
Description: Substitution of variable in universal quantifier. Version of sb8 2521 with a disjoint variable condition, not requiring ax-13 2372. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) |
Ref | Expression |
---|---|
sb8v.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8v | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8v.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfs1v 2155 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | sbequ12 2247 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvalv1 2340 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbnf2 2356 sb8eulem 2598 abv 3433 abvALT 3434 mo5f 30738 ax11-pm2 34946 bj-nfcf 35038 sbcalf 36199 |
Copyright terms: Public domain | W3C validator |