MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvinva Structured version   Visualization version   GIF version

Theorem equvinva 2034
Description: A modified version of the forward implication of equvinv 2033 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.)
Assertion
Ref Expression
equvinva (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equvinva
StepHypRef Expression
1 ax6evr 2019 . 2 𝑧 𝑦 = 𝑧
2 equtr 2025 . . . 4 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
32ancrd 551 . . 3 (𝑥 = 𝑦 → (𝑦 = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)))
43eximdv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧 𝑦 = 𝑧 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧)))
51, 4mpi 20 1 (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  sbequ2  2244  sbequ2OLD  2245  ax13lem1  2374  nfeqf  2381  wl-ax13lem1  35592
  Copyright terms: Public domain W3C validator