![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version |
Description: A commuted form of ax6ev 1965. (Contributed by BJ, 7-Dec-2020.) |
Ref | Expression |
---|---|
ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1965 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | equcomiv 2009 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
3 | 1, 2 | eximii 1831 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: ax7 2011 equvinva 2025 ax12v2 2165 19.8a 2166 axc11n 2417 mo4 2552 eu6lem 2559 axprlem3 5413 dfid2 5566 relopabi 5812 relop 5840 bj-ax6e 36035 axc11n11r 36051 bj-dfid2ALT 36436 wl-spae 36880 sn-axprlem3 41527 |
Copyright terms: Public domain | W3C validator |