MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2022
Description: A commuted form of ax6ev 1977. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1977 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2021 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1843 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015
This theorem depends on definitions:  df-bi 206  df-ex 1787
This theorem is referenced by:  ax7  2023  equvinva  2037  ax12v2  2177  19.8a  2178  axc11n  2428  mo4  2568  eu6lem  2575  axprlem3  5352  dfid2  5492  relopabi  5731  relop  5758  bj-ax6e  34858  axc11n11r  34874  bj-dfid2ALT  35245  wl-spae  35689  sn-axprlem3  40195
  Copyright terms: Public domain W3C validator