![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version |
Description: A commuted form of ax6ev 2074. (Contributed by BJ, 7-Dec-2020.) |
Ref | Expression |
---|---|
ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 2074 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | equcomiv 2113 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
3 | 1, 2 | eximii 1932 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 |
This theorem depends on definitions: df-bi 199 df-ex 1876 |
This theorem is referenced by: ax7 2115 equvinva 2131 ax12v2 2215 19.8a 2216 axc11n 2431 eu6 2611 eu6OLD 2612 euequ 2633 relopabi 5447 relop 5474 elridOLD 5668 bj-ax6e 33150 axc11n11r 33170 wl-spae 33789 |
Copyright terms: Public domain | W3C validator |