![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version |
Description: A commuted form of ax6ev 1966. (Contributed by BJ, 7-Dec-2020.) |
Ref | Expression |
---|---|
ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1966 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | equcomiv 2010 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
3 | 1, 2 | eximii 1833 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: ax7 2012 equvinva 2026 ax12v2 2176 19.8a 2178 axc11n 2428 mo4 2563 eu6lem 2570 axprlem3OLD 5433 dfid2 5584 relopabi 5834 relop 5863 bj-ax6e 36650 axc11n11r 36665 bj-dfid2ALT 37047 wl-spae 37501 sn-axprlem3 42234 |
Copyright terms: Public domain | W3C validator |