MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2014
Description: A commuted form of ax6ev 1969. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1969 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2013 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1835 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  ax7  2015  equvinva  2029  ax12v2  2180  19.8a  2182  axc11n  2434  mo4  2569  eu6lem  2576  axprlem3  5443  dfid2  5595  relopabi  5846  relop  5875  bj-ax6e  36634  axc11n11r  36649  bj-dfid2ALT  37031  wl-spae  37475  sn-axprlem3  42210
  Copyright terms: Public domain W3C validator