MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2114
Description: A commuted form of ax6ev 2074. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 2074 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2113 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1932 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107
This theorem depends on definitions:  df-bi 199  df-ex 1876
This theorem is referenced by:  ax7  2115  equvinva  2131  ax12v2  2215  19.8a  2216  axc11n  2431  eu6  2611  eu6OLD  2612  euequ  2633  relopabi  5447  relop  5474  elridOLD  5668  bj-ax6e  33150  axc11n11r  33170  wl-spae  33789
  Copyright terms: Public domain W3C validator