| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version | ||
| Description: A commuted form of ax6ev 1970. (Contributed by BJ, 7-Dec-2020.) |
| Ref | Expression |
|---|---|
| ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1970 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | equcomiv 2015 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 3 | 1, 2 | eximii 1838 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: ax7 2017 equvinva 2031 ax12v2 2182 19.8a 2184 axc11n 2426 mo4 2561 eu6lem 2568 axprlem3OLD 5366 dfid2 5513 relopabi 5762 relop 5790 bj-ax6e 36708 axc11n11r 36723 bj-dfid2ALT 37105 wl-spae 37561 sn-axprlem3 42256 ormkglobd 46919 |
| Copyright terms: Public domain | W3C validator |