MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2016
Description: A commuted form of ax6ev 1970. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1970 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2015 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1838 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  ax7  2017  equvinva  2031  ax12v2  2182  19.8a  2184  axc11n  2426  mo4  2561  eu6lem  2568  axprlem3OLD  5366  dfid2  5513  relopabi  5762  relop  5790  bj-ax6e  36708  axc11n11r  36723  bj-dfid2ALT  37105  wl-spae  37561  sn-axprlem3  42256  ormkglobd  46919
  Copyright terms: Public domain W3C validator