MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2019
Description: A commuted form of ax6ev 1974. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1974 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2018 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1840 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  ax7  2020  equvinva  2034  ax12v2  2174  19.8a  2175  axc11n  2426  mo4  2561  eu6lem  2568  axprlem3  5424  dfid2  5577  relopabi  5823  relop  5851  bj-ax6e  35545  axc11n11r  35561  bj-dfid2ALT  35946  wl-spae  36390  sn-axprlem3  41034
  Copyright terms: Public domain W3C validator