MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6evr Structured version   Visualization version   GIF version

Theorem ax6evr 2010
Description: A commuted form of ax6ev 1965. (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 ax6ev 1965 . 2 𝑥 𝑥 = 𝑦
2 equcomiv 2009 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1831 1 𝑥 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  ax7  2011  equvinva  2025  ax12v2  2165  19.8a  2166  axc11n  2417  mo4  2552  eu6lem  2559  axprlem3  5413  dfid2  5566  relopabi  5812  relop  5840  bj-ax6e  36035  axc11n11r  36051  bj-dfid2ALT  36436  wl-spae  36880  sn-axprlem3  41527
  Copyright terms: Public domain W3C validator