| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version | ||
| Description: A commuted form of ax6ev 1969. (Contributed by BJ, 7-Dec-2020.) |
| Ref | Expression |
|---|---|
| ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1969 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | equcomiv 2014 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 3 | 1, 2 | eximii 1837 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: ax7 2016 equvinva 2030 ax12v2 2180 19.8a 2182 axc11n 2425 mo4 2560 eu6lem 2567 axprlem3OLD 5386 dfid2 5538 relopabi 5788 relop 5817 bj-ax6e 36663 axc11n11r 36678 bj-dfid2ALT 37060 wl-spae 37516 sn-axprlem3 42212 ormkglobd 46880 |
| Copyright terms: Public domain | W3C validator |