![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version GIF version |
Description: A commuted form of ax6ev 1969. (Contributed by BJ, 7-Dec-2020.) |
Ref | Expression |
---|---|
ax6evr | ⊢ ∃𝑥 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1969 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | equcomiv 2013 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
3 | 1, 2 | eximii 1835 | 1 ⊢ ∃𝑥 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: ax7 2015 equvinva 2029 ax12v2 2180 19.8a 2182 axc11n 2434 mo4 2569 eu6lem 2576 axprlem3 5443 dfid2 5595 relopabi 5846 relop 5875 bj-ax6e 36634 axc11n11r 36649 bj-dfid2ALT 37031 wl-spae 37475 sn-axprlem3 42210 |
Copyright terms: Public domain | W3C validator |