Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqf | Structured version Visualization version GIF version |
Description: A variable is effectively not free in an equality if it is not either of the involved variables. Ⅎ version of ax-c9 36831. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 6-Oct-2016.) Remove dependency on ax-11 2156. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeqf | ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2151 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑥 | |
2 | nfna1 2151 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
3 | 1, 2 | nfan 1903 | . 2 ⊢ Ⅎ𝑧(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
4 | equvinva 2034 | . . 3 ⊢ (𝑥 = 𝑦 → ∃𝑤(𝑥 = 𝑤 ∧ 𝑦 = 𝑤)) | |
5 | dveeq1 2380 | . . . . . . . 8 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑤 → ∀𝑧 𝑥 = 𝑤)) | |
6 | 5 | imp 406 | . . . . . . 7 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤) → ∀𝑧 𝑥 = 𝑤) |
7 | dveeq1 2380 | . . . . . . . 8 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → (𝑦 = 𝑤 → ∀𝑧 𝑦 = 𝑤)) | |
8 | 7 | imp 406 | . . . . . . 7 ⊢ ((¬ ∀𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤) → ∀𝑧 𝑦 = 𝑤) |
9 | equtr2 2031 | . . . . . . . 8 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑦) | |
10 | 9 | alanimi 1820 | . . . . . . 7 ⊢ ((∀𝑧 𝑥 = 𝑤 ∧ ∀𝑧 𝑦 = 𝑤) → ∀𝑧 𝑥 = 𝑦) |
11 | 6, 8, 10 | syl2an 595 | . . . . . 6 ⊢ (((¬ ∀𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑤) ∧ (¬ ∀𝑧 𝑧 = 𝑦 ∧ 𝑦 = 𝑤)) → ∀𝑧 𝑥 = 𝑦) |
12 | 11 | an4s 656 | . . . . 5 ⊢ (((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) ∧ (𝑥 = 𝑤 ∧ 𝑦 = 𝑤)) → ∀𝑧 𝑥 = 𝑦) |
13 | 12 | ex 412 | . . . 4 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ((𝑥 = 𝑤 ∧ 𝑦 = 𝑤) → ∀𝑧 𝑥 = 𝑦)) |
14 | 13 | exlimdv 1937 | . . 3 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑤(𝑥 = 𝑤 ∧ 𝑦 = 𝑤) → ∀𝑧 𝑥 = 𝑦)) |
15 | 4, 14 | syl5 34 | . 2 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
16 | 3, 15 | nf5d 2284 | 1 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: axc9 2382 dvelimf 2448 equvel 2456 2ax6elem 2470 wl-exeq 35620 wl-nfeqfb 35622 wl-equsb4 35639 wl-2sb6d 35640 wl-sbalnae 35644 |
Copyright terms: Public domain | W3C validator |