Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: impac 553 equvinva 2033 sbcg 3795 reuan 3829 2reu1 3830 reupick 4252 reusv2lem3 5323 ssrelrn 5803 relssres 5932 funmo 6450 funssres 6478 dffo4 6979 dffo5 6980 dfwe2 7624 ordpwsuc 7662 ordunisuc2 7691 dfom2 7714 nnsuc 7730 nnaordex 8469 wdom2d 9339 iundom2g 10296 fzospliti 13419 rexuz3 15060 qredeq 16362 prmdvdsfz 16410 dirge 18321 lssssr 20215 lpigen 20527 psgnodpm 20793 neiptopnei 22283 metustexhalf 23712 dyadmbllem 24763 3cyclfrgrrn2 28651 atexch 30743 ordtconnlem1 31874 bj-ideqg1 35335 bj-imdirval3 35355 isbasisrelowllem1 35526 isbasisrelowllem2 35527 pibt2 35588 phpreu 35761 poimirlem26 35803 sstotbnd3 35934 eqlkr3 37115 dihatexv 39352 dvh3dim2 39462 prjspner1 40463 neik0pk1imk0 41657 pm14.123b 42044 ordpss 42069 climreeq 43154 itscnhlc0xyqsol 46111 |
Copyright terms: Public domain | W3C validator |