![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: impac 552 equvinva 2026 sbcg 3869 reuan 3904 2reu1 3905 reupick 4334 reusv2lem3 5405 axprlem4 5431 ssrelrn 5907 relssres 6041 funmo 6582 funmoOLD 6583 funssres 6611 dffo4 7122 dffo5 7123 dfwe2 7792 ordpwsuc 7834 ordunisuc2 7864 dfom2 7888 nnsuc 7904 nnaordex 8674 wdom2d 9617 iundom2g 10577 fzospliti 13727 rexuz3 15383 qredeq 16690 prmdvdsfz 16738 dirge 18660 lssssr 20969 lpigen 21362 psgnodpm 21623 psdmul 22187 neiptopnei 23155 metustexhalf 24584 dyadmbllem 25647 3cyclfrgrrn2 30315 atexch 32409 ordtconnlem1 33884 bj-ideqg1 37146 bj-imdirval3 37166 isbasisrelowllem1 37337 isbasisrelowllem2 37338 pibt2 37399 phpreu 37590 poimirlem26 37632 sstotbnd3 37762 eqlkr3 39082 dihatexv 41320 dvh3dim2 41430 unitscyglem4 42179 prjspner1 42612 oasubex 43275 naddwordnexlem4 43390 neik0pk1imk0 44036 pm14.123b 44421 ordpss 44446 climreeq 45568 uspgrlimlem1 47890 itscnhlc0xyqsol 48614 |
Copyright terms: Public domain | W3C validator |