![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: impac 553 equvinva 2014 reuan 3808 2reu1 3809 reupick 4207 reusv2lem3 5192 ssrelrn 5649 relssres 5774 funmo 6241 funssres 6268 dffo4 6732 dffo5 6733 dfwe2 7352 ordpwsuc 7386 ordunisuc2 7415 dfom2 7438 nnsuc 7453 nnaordex 8114 wdom2d 8890 iundom2g 9808 fzospliti 12919 rexuz3 14542 qredeq 15830 prmdvdsfz 15878 dirge 17676 lssssr 19415 lpigen 19718 psgnodpm 20414 neiptopnei 21424 metustexhalf 22849 dyadmbllem 23883 3cyclfrgrrn2 27758 atexch 29849 ordtconnlem1 30784 isbasisrelowllem1 34167 isbasisrelowllem2 34168 pibt2 34229 phpreu 34407 poimirlem26 34449 sstotbnd3 34586 eqlkr3 35768 dihatexv 38005 dvh3dim2 38115 neik0pk1imk0 39882 pm14.123b 40296 ordpss 40322 climreeq 41436 itscnhlc0xyqsol 44233 |
Copyright terms: Public domain | W3C validator |