MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancrd Structured version   Visualization version   GIF version

Theorem ancrd 552
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancrd (𝜑 → (𝜓 → (𝜒𝜓)))

Proof of Theorem ancrd
StepHypRef Expression
1 ancrd.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜓𝜓))
31, 2jcad 513 1 (𝜑 → (𝜓 → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  impac  553  equvinva  2033  sbcg  3795  reuan  3829  2reu1  3830  reupick  4252  reusv2lem3  5323  ssrelrn  5803  relssres  5932  funmo  6450  funssres  6478  dffo4  6979  dffo5  6980  dfwe2  7624  ordpwsuc  7662  ordunisuc2  7691  dfom2  7714  nnsuc  7730  nnaordex  8469  wdom2d  9339  iundom2g  10296  fzospliti  13419  rexuz3  15060  qredeq  16362  prmdvdsfz  16410  dirge  18321  lssssr  20215  lpigen  20527  psgnodpm  20793  neiptopnei  22283  metustexhalf  23712  dyadmbllem  24763  3cyclfrgrrn2  28651  atexch  30743  ordtconnlem1  31874  bj-ideqg1  35335  bj-imdirval3  35355  isbasisrelowllem1  35526  isbasisrelowllem2  35527  pibt2  35588  phpreu  35761  poimirlem26  35803  sstotbnd3  35934  eqlkr3  37115  dihatexv  39352  dvh3dim2  39462  prjspner1  40463  neik0pk1imk0  41657  pm14.123b  42044  ordpss  42069  climreeq  43154  itscnhlc0xyqsol  46111
  Copyright terms: Public domain W3C validator