| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2030 sbcg 3826 reuan 3859 2reu1 3860 reupick 4292 reusv2lem3 5355 axprlem4 5381 ssrelrn 5858 relssres 5993 funmo 6531 funmoOLD 6532 funssres 6560 dffo4 7075 dffo5 7076 dfwe2 7750 ordpwsuc 7790 ordunisuc2 7820 dfom2 7844 nnsuc 7860 nnaordex 8602 wdom2d 9533 iundom2g 10493 fzospliti 13652 rexuz3 15315 qredeq 16627 prmdvdsfz 16675 dirge 18562 lssssr 20860 lpigen 21245 psgnodpm 21497 psdmul 22053 neiptopnei 23019 metustexhalf 24444 dyadmbllem 25500 3cyclfrgrrn2 30216 atexch 32310 ordtconnlem1 33914 bj-ideqg1 37152 bj-imdirval3 37172 isbasisrelowllem1 37343 isbasisrelowllem2 37344 pibt2 37405 phpreu 37598 poimirlem26 37640 sstotbnd3 37770 eqlkr3 39094 dihatexv 41332 dvh3dim2 41442 unitscyglem4 42186 prjspner1 42614 oasubex 43275 naddwordnexlem4 43390 neik0pk1imk0 44036 pm14.123b 44415 ordpss 44440 climreeq 45611 uspgrlimlem1 47987 itscnhlc0xyqsol 48754 |
| Copyright terms: Public domain | W3C validator |