| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2030 sbcg 3823 reuan 3856 2reu1 3857 reupick 4288 reusv2lem3 5350 axprlem4 5376 ssrelrn 5848 relssres 5982 funmo 6516 funssres 6544 dffo4 7057 dffo5 7058 dfwe2 7730 ordpwsuc 7770 ordunisuc2 7800 dfom2 7824 nnsuc 7840 nnaordex 8579 wdom2d 9509 iundom2g 10469 fzospliti 13628 rexuz3 15291 qredeq 16603 prmdvdsfz 16651 dirge 18538 lssssr 20836 lpigen 21221 psgnodpm 21473 psdmul 22029 neiptopnei 22995 metustexhalf 24420 dyadmbllem 25476 3cyclfrgrrn2 30189 atexch 32283 ordtconnlem1 33887 bj-ideqg1 37125 bj-imdirval3 37145 isbasisrelowllem1 37316 isbasisrelowllem2 37317 pibt2 37378 phpreu 37571 poimirlem26 37613 sstotbnd3 37743 eqlkr3 39067 dihatexv 41305 dvh3dim2 41415 unitscyglem4 42159 prjspner1 42587 oasubex 43248 naddwordnexlem4 43363 neik0pk1imk0 44009 pm14.123b 44388 ordpss 44413 climreeq 45584 uspgrlimlem1 47960 itscnhlc0xyqsol 48727 |
| Copyright terms: Public domain | W3C validator |