Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: impac 552 equvinva 2034 sbcg 3791 reuan 3825 2reu1 3826 reupick 4249 reusv2lem3 5318 ssrelrn 5792 relssres 5921 funmo 6434 funssres 6462 dffo4 6961 dffo5 6962 dfwe2 7602 ordpwsuc 7637 ordunisuc2 7666 dfom2 7689 nnsuc 7705 nnaordex 8431 wdom2d 9269 iundom2g 10227 fzospliti 13347 rexuz3 14988 qredeq 16290 prmdvdsfz 16338 dirge 18236 lssssr 20130 lpigen 20440 psgnodpm 20705 neiptopnei 22191 metustexhalf 23618 dyadmbllem 24668 3cyclfrgrrn2 28552 atexch 30644 ordtconnlem1 31776 bj-ideqg1 35262 bj-imdirval3 35282 isbasisrelowllem1 35453 isbasisrelowllem2 35454 pibt2 35515 phpreu 35688 poimirlem26 35730 sstotbnd3 35861 eqlkr3 37042 dihatexv 39279 dvh3dim2 39389 prjspner1 40384 neik0pk1imk0 41546 pm14.123b 41933 ordpss 41958 climreeq 43044 itscnhlc0xyqsol 45999 |
Copyright terms: Public domain | W3C validator |