![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: impac 553 equvinva 2033 sbcg 3856 reuan 3890 2reu1 3891 reupick 4318 reusv2lem3 5398 ssrelrn 5894 relssres 6022 funmo 6563 funmoOLD 6564 funssres 6592 dffo4 7104 dffo5 7105 dfwe2 7760 ordpwsuc 7802 ordunisuc2 7832 dfom2 7856 nnsuc 7872 nnaordex 8637 wdom2d 9574 iundom2g 10534 fzospliti 13663 rexuz3 15294 qredeq 16593 prmdvdsfz 16641 dirge 18555 lssssr 20563 lpigen 20893 psgnodpm 21140 neiptopnei 22635 metustexhalf 24064 dyadmbllem 25115 3cyclfrgrrn2 29537 atexch 31629 ordtconnlem1 32899 bj-ideqg1 36040 bj-imdirval3 36060 isbasisrelowllem1 36231 isbasisrelowllem2 36232 pibt2 36293 phpreu 36467 poimirlem26 36509 sstotbnd3 36639 eqlkr3 37966 dihatexv 40204 dvh3dim2 40314 prjspner1 41369 oasubex 42026 naddwordnexlem4 42142 neik0pk1imk0 42788 pm14.123b 43175 ordpss 43200 climreeq 44319 itscnhlc0xyqsol 47441 |
Copyright terms: Public domain | W3C validator |