Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: impac 554 equvinva 2033 sbcg 3813 reuan 3847 2reu1 3848 reupick 4273 reusv2lem3 5350 ssrelrn 5843 relssres 5971 funmo 6508 funmoOLD 6509 funssres 6537 dffo4 7044 dffo5 7045 dfwe2 7695 ordpwsuc 7737 ordunisuc2 7767 dfom2 7791 nnsuc 7807 nnaordex 8549 wdom2d 9446 iundom2g 10406 fzospliti 13529 rexuz3 15164 qredeq 16464 prmdvdsfz 16512 dirge 18423 lssssr 20325 lpigen 20637 psgnodpm 20903 neiptopnei 22393 metustexhalf 23822 dyadmbllem 24873 3cyclfrgrrn2 29005 atexch 31097 ordtconnlem1 32236 bj-ideqg1 35491 bj-imdirval3 35511 isbasisrelowllem1 35682 isbasisrelowllem2 35683 pibt2 35744 phpreu 35917 poimirlem26 35959 sstotbnd3 36090 eqlkr3 37419 dihatexv 39657 dvh3dim2 39767 prjspner1 40776 neik0pk1imk0 42030 pm14.123b 42417 ordpss 42442 climreeq 43542 itscnhlc0xyqsol 46529 |
Copyright terms: Public domain | W3C validator |