| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2030 sbcg 3829 reuan 3862 2reu1 3863 reupick 4295 reusv2lem3 5358 axprlem4 5384 ssrelrn 5861 relssres 5996 funmo 6534 funmoOLD 6535 funssres 6563 dffo4 7078 dffo5 7079 dfwe2 7753 ordpwsuc 7793 ordunisuc2 7823 dfom2 7847 nnsuc 7863 nnaordex 8605 wdom2d 9540 iundom2g 10500 fzospliti 13659 rexuz3 15322 qredeq 16634 prmdvdsfz 16682 dirge 18569 lssssr 20867 lpigen 21252 psgnodpm 21504 psdmul 22060 neiptopnei 23026 metustexhalf 24451 dyadmbllem 25507 3cyclfrgrrn2 30223 atexch 32317 ordtconnlem1 33921 bj-ideqg1 37159 bj-imdirval3 37179 isbasisrelowllem1 37350 isbasisrelowllem2 37351 pibt2 37412 phpreu 37605 poimirlem26 37647 sstotbnd3 37777 eqlkr3 39101 dihatexv 41339 dvh3dim2 41449 unitscyglem4 42193 prjspner1 42621 oasubex 43282 naddwordnexlem4 43397 neik0pk1imk0 44043 pm14.123b 44422 ordpss 44447 climreeq 45618 uspgrlimlem1 47991 itscnhlc0xyqsol 48758 |
| Copyright terms: Public domain | W3C validator |