| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2029 sbcg 3838 reuan 3871 2reu1 3872 reupick 4304 reusv2lem3 5370 axprlem4 5396 ssrelrn 5874 relssres 6009 funmo 6550 funmoOLD 6551 funssres 6579 dffo4 7092 dffo5 7093 dfwe2 7766 ordpwsuc 7807 ordunisuc2 7837 dfom2 7861 nnsuc 7877 nnaordex 8648 wdom2d 9592 iundom2g 10552 fzospliti 13706 rexuz3 15365 qredeq 16674 prmdvdsfz 16722 dirge 18611 lssssr 20909 lpigen 21294 psgnodpm 21546 psdmul 22102 neiptopnei 23068 metustexhalf 24493 dyadmbllem 25550 3cyclfrgrrn2 30214 atexch 32308 ordtconnlem1 33901 bj-ideqg1 37128 bj-imdirval3 37148 isbasisrelowllem1 37319 isbasisrelowllem2 37320 pibt2 37381 phpreu 37574 poimirlem26 37616 sstotbnd3 37746 eqlkr3 39065 dihatexv 41303 dvh3dim2 41413 unitscyglem4 42157 prjspner1 42596 oasubex 43257 naddwordnexlem4 43372 neik0pk1imk0 44018 pm14.123b 44398 ordpss 44423 climreeq 45590 uspgrlimlem1 47948 itscnhlc0xyqsol 48693 |
| Copyright terms: Public domain | W3C validator |