| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2030 sbcg 3815 reuan 3848 2reu1 3849 reupick 4280 reusv2lem3 5339 axprlem4 5365 ssrelrn 5837 relssres 5973 funmo 6498 funssres 6526 dffo4 7037 dffo5 7038 dfwe2 7710 ordpwsuc 7748 ordunisuc2 7777 dfom2 7801 nnsuc 7817 nnaordex 8556 wdom2d 9472 iundom2g 10434 fzospliti 13594 rexuz3 15256 qredeq 16568 prmdvdsfz 16616 dirge 18509 lssssr 20857 lpigen 21242 psgnodpm 21495 psdmul 22051 neiptopnei 23017 metustexhalf 24442 dyadmbllem 25498 3cyclfrgrrn2 30231 atexch 32325 ordtconnlem1 33891 bj-ideqg1 37142 bj-imdirval3 37162 isbasisrelowllem1 37333 isbasisrelowllem2 37334 pibt2 37395 phpreu 37588 poimirlem26 37630 sstotbnd3 37760 eqlkr3 39084 dihatexv 41321 dvh3dim2 41431 unitscyglem4 42175 prjspner1 42603 oasubex 43263 naddwordnexlem4 43378 neik0pk1imk0 44024 pm14.123b 44403 ordpss 44428 climreeq 45598 uspgrlimlem1 47976 itscnhlc0xyqsol 48754 |
| Copyright terms: Public domain | W3C validator |