![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: impac 552 equvinva 2029 sbcg 3883 reuan 3918 2reu1 3919 reupick 4348 reusv2lem3 5418 ssrelrn 5919 relssres 6051 funmo 6593 funmoOLD 6594 funssres 6622 dffo4 7137 dffo5 7138 dfwe2 7809 ordpwsuc 7851 ordunisuc2 7881 dfom2 7905 nnsuc 7921 nnaordex 8694 wdom2d 9649 iundom2g 10609 fzospliti 13748 rexuz3 15397 qredeq 16704 prmdvdsfz 16752 dirge 18673 lssssr 20975 lpigen 21368 psgnodpm 21629 psdmul 22193 neiptopnei 23161 metustexhalf 24590 dyadmbllem 25653 3cyclfrgrrn2 30319 atexch 32413 ordtconnlem1 33870 bj-ideqg1 37130 bj-imdirval3 37150 isbasisrelowllem1 37321 isbasisrelowllem2 37322 pibt2 37383 phpreu 37564 poimirlem26 37606 sstotbnd3 37736 eqlkr3 39057 dihatexv 41295 dvh3dim2 41405 unitscyglem4 42155 prjspner1 42581 oasubex 43248 naddwordnexlem4 43363 neik0pk1imk0 44009 pm14.123b 44395 ordpss 44420 climreeq 45534 uspgrlimlem1 47812 itscnhlc0xyqsol 48499 |
Copyright terms: Public domain | W3C validator |