| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2030 sbcg 3823 reuan 3856 2reu1 3857 reupick 4288 reusv2lem3 5350 axprlem4 5376 ssrelrn 5848 relssres 5982 funmo 6516 funssres 6544 dffo4 7057 dffo5 7058 dfwe2 7730 ordpwsuc 7770 ordunisuc2 7800 dfom2 7824 nnsuc 7840 nnaordex 8579 wdom2d 9509 iundom2g 10469 fzospliti 13628 rexuz3 15291 qredeq 16603 prmdvdsfz 16651 dirge 18544 lssssr 20892 lpigen 21277 psgnodpm 21530 psdmul 22086 neiptopnei 23052 metustexhalf 24477 dyadmbllem 25533 3cyclfrgrrn2 30266 atexch 32360 ordtconnlem1 33907 bj-ideqg1 37145 bj-imdirval3 37165 isbasisrelowllem1 37336 isbasisrelowllem2 37337 pibt2 37398 phpreu 37591 poimirlem26 37633 sstotbnd3 37763 eqlkr3 39087 dihatexv 41325 dvh3dim2 41435 unitscyglem4 42179 prjspner1 42607 oasubex 43268 naddwordnexlem4 43383 neik0pk1imk0 44029 pm14.123b 44408 ordpss 44433 climreeq 45604 uspgrlimlem1 47980 itscnhlc0xyqsol 48747 |
| Copyright terms: Public domain | W3C validator |