| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impac 552 equvinva 2031 sbcg 3809 reuan 3842 2reu1 3843 reupick 4276 reusv2lem3 5336 axprlem4 5362 ssrelrn 5833 relssres 5970 funmo 6497 funssres 6525 dffo4 7036 dffo5 7037 dfwe2 7707 ordpwsuc 7745 ordunisuc2 7774 dfom2 7798 nnsuc 7814 nnaordex 8553 wdom2d 9466 iundom2g 10431 fzospliti 13591 rexuz3 15256 qredeq 16568 prmdvdsfz 16616 dirge 18509 lssssr 20887 lpigen 21272 psgnodpm 21525 psdmul 22081 neiptopnei 23047 metustexhalf 24471 dyadmbllem 25527 3cyclfrgrrn2 30267 atexch 32361 ordtconnlem1 33937 bj-ideqg1 37208 bj-imdirval3 37228 isbasisrelowllem1 37399 isbasisrelowllem2 37400 pibt2 37461 phpreu 37654 poimirlem26 37696 sstotbnd3 37826 eqlkr3 39210 dihatexv 41447 dvh3dim2 41557 unitscyglem4 42301 prjspner1 42729 oasubex 43389 naddwordnexlem4 43504 neik0pk1imk0 44150 pm14.123b 44529 ordpss 44553 climreeq 45723 uspgrlimlem1 48098 itscnhlc0xyqsol 48876 |
| Copyright terms: Public domain | W3C validator |