![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancrd | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: impac 554 equvinva 2034 sbcg 3857 reuan 3891 2reu1 3892 reupick 4319 reusv2lem3 5399 ssrelrn 5895 relssres 6023 funmo 6564 funmoOLD 6565 funssres 6593 dffo4 7105 dffo5 7106 dfwe2 7761 ordpwsuc 7803 ordunisuc2 7833 dfom2 7857 nnsuc 7873 nnaordex 8638 wdom2d 9575 iundom2g 10535 fzospliti 13664 rexuz3 15295 qredeq 16594 prmdvdsfz 16642 dirge 18556 lssssr 20564 lpigen 20894 psgnodpm 21141 neiptopnei 22636 metustexhalf 24065 dyadmbllem 25116 3cyclfrgrrn2 29540 atexch 31634 ordtconnlem1 32904 bj-ideqg1 36045 bj-imdirval3 36065 isbasisrelowllem1 36236 isbasisrelowllem2 36237 pibt2 36298 phpreu 36472 poimirlem26 36514 sstotbnd3 36644 eqlkr3 37971 dihatexv 40209 dvh3dim2 40319 prjspner1 41368 oasubex 42036 naddwordnexlem4 42152 neik0pk1imk0 42798 pm14.123b 43185 ordpss 43210 climreeq 44329 itscnhlc0xyqsol 47451 |
Copyright terms: Public domain | W3C validator |