Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex3 | Structured version Visualization version GIF version |
Description: Apply ex 412 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.) |
Ref | Expression |
---|---|
ex3.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
ex3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex3.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | 3impa 1108 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: fzrevral 13270 pthdepisspth 28004 cyc3genpm 31321 iunconnlem2 42444 |
Copyright terms: Public domain | W3C validator |