|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ex3 | Structured version Visualization version GIF version | ||
| Description: Apply ex 412 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| ex3.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| ex3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ex3.1 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜃 → 𝜏)) | 
| 3 | 2 | 3impa 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: fzrevral 13652 pthdepisspth 29755 cyc3genpm 33172 iunconnlem2 44955 | 
| Copyright terms: Public domain | W3C validator |