Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1112 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 410 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: 3an1rs 1360 reupick2 4219 indcardi 9554 ledivge1le 12556 expcan 13638 ltexp2 13639 leexp1a 13644 expnbnd 13698 cshf1 14274 rtrclreclem4 14523 relexpindlem 14525 ncoprmlnprm 16181 xrsdsreclblem 20276 matecl 21189 scmateALT 21276 riinopn 21672 neindisj2 21887 filufint 22684 tsmsxp 22919 ewlkle 27560 uspgr2wlkeq 27600 spthonepeq 27706 wwlksm1edg 27832 clwwisshclwws 27965 clwwlknwwlksn 27988 clwwlkinwwlk 27990 wwlksext2clwwlk 28007 3vfriswmgr 28228 homco1 29749 homulass 29750 hoadddir 29752 satffunlem 32947 mblfinlem3 35472 zerdivemp1x 35761 athgt 37126 psubspi 37417 paddasslem14 37503 eluzge0nn0 44386 iccpartigtl 44457 lighneal 44645 isomgrsym 44870 |
Copyright terms: Public domain | W3C validator |