![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1111 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3an1rs 1359 reupick2 4350 indcardi 10110 ledivge1le 13128 expcan 14219 ltexp2 14220 leexp1a 14225 expnbnd 14281 cshf1 14858 rtrclreclem4 15110 relexpindlem 15112 ncoprmlnprm 16775 rnglidlmcl 21249 xrsdsreclblem 21453 matecl 22452 scmateALT 22539 riinopn 22935 neindisj2 23152 filufint 23949 tsmsxp 24184 ewlkle 29641 uspgr2wlkeq 29682 spthonepeq 29788 wwlksm1edg 29914 clwwisshclwws 30047 clwwlknwwlksn 30070 clwwlkinwwlk 30072 wwlksext2clwwlk 30089 3vfriswmgr 30310 homco1 31833 homulass 31834 hoadddir 31836 satffunlem 35369 mblfinlem3 37619 zerdivemp1x 37907 athgt 39413 psubspi 39704 paddasslem14 39790 eluzge0nn0 47227 iccpartigtl 47297 lighneal 47485 uhgrimisgrgriclem 47782 uhgrimisgrgric 47783 clnbgrgrimlem 47785 uspgrlimlem3 47814 |
Copyright terms: Public domain | W3C validator |