MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp1 Structured version   Visualization version   GIF version

Theorem 3imp1 1348
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3imp1.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
3imp1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 3imp1
StepHypRef Expression
1 3imp1.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
213imp 1110 . 2 ((𝜑𝜓𝜒) → (𝜃𝜏))
32imp 406 1 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3an1rs  1360  reupick2  4290  indcardi  9970  ledivge1le  13000  expcan  14110  ltexp2  14111  leexp1a  14116  expnbnd  14173  cshf1  14751  rtrclreclem4  15003  relexpindlem  15005  ncoprmlnprm  16674  rnglidlmcl  21102  xrsdsreclblem  21305  matecl  22288  scmateALT  22375  riinopn  22771  neindisj2  22986  filufint  23783  tsmsxp  24018  ewlkle  29509  uspgr2wlkeq  29549  spthonepeq  29655  wwlksm1edg  29784  clwwisshclwws  29917  clwwlknwwlksn  29940  clwwlkinwwlk  29942  wwlksext2clwwlk  29959  3vfriswmgr  30180  homco1  31703  homulass  31704  hoadddir  31706  satffunlem  35361  mblfinlem3  37626  zerdivemp1x  37914  athgt  39423  psubspi  39714  paddasslem14  39800  eluzge0nn0  47286  iccpartigtl  47397  lighneal  47585  uhgrimisgrgriclem  47903  uhgrimisgrgric  47904  clnbgrgrimlem  47906  uspgrlimlem3  47962  clnbgr3stgrgrlic  47984  gpgusgralem  48020
  Copyright terms: Public domain W3C validator