| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4276 indcardi 9927 ledivge1le 12958 expcan 14071 ltexp2 14072 leexp1a 14077 expnbnd 14134 cshf1 14712 rtrclreclem4 14963 relexpindlem 14965 ncoprmlnprm 16634 rnglidlmcl 21148 xrsdsreclblem 21344 matecl 22335 scmateALT 22422 riinopn 22818 neindisj2 23033 filufint 23830 tsmsxp 24065 ewlkle 29579 uspgr2wlkeq 29619 spthonepeq 29725 wwlksm1edg 29854 clwwisshclwws 29987 clwwlknwwlksn 30010 clwwlkinwwlk 30012 wwlksext2clwwlk 30029 3vfriswmgr 30250 homco1 31773 homulass 31774 hoadddir 31776 satffunlem 35437 mblfinlem3 37699 zerdivemp1x 37987 athgt 39495 psubspi 39786 paddasslem14 39872 eluzge0nn0 47343 iccpartigtl 47454 lighneal 47642 uhgrimisgrgriclem 47961 uhgrimisgrgric 47962 clnbgrgrimlem 47964 uspgrlimlem3 48021 clnbgr3stgrgrlic 48051 gpgusgralem 48087 |
| Copyright terms: Public domain | W3C validator |