![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3an1rs 1358 reupick2 4336 indcardi 10078 ledivge1le 13103 expcan 14205 ltexp2 14206 leexp1a 14211 expnbnd 14267 cshf1 14844 rtrclreclem4 15096 relexpindlem 15098 ncoprmlnprm 16761 rnglidlmcl 21243 xrsdsreclblem 21447 matecl 22446 scmateALT 22533 riinopn 22929 neindisj2 23146 filufint 23943 tsmsxp 24178 ewlkle 29637 uspgr2wlkeq 29678 spthonepeq 29784 wwlksm1edg 29910 clwwisshclwws 30043 clwwlknwwlksn 30066 clwwlkinwwlk 30068 wwlksext2clwwlk 30085 3vfriswmgr 30306 homco1 31829 homulass 31830 hoadddir 31832 satffunlem 35385 mblfinlem3 37645 zerdivemp1x 37933 athgt 39438 psubspi 39729 paddasslem14 39815 eluzge0nn0 47261 iccpartigtl 47347 lighneal 47535 uhgrimisgrgriclem 47835 uhgrimisgrgric 47836 clnbgrgrimlem 47838 uspgrlimlem3 47892 clnbgr3stgrgrlic 47914 gpgusgralem 47945 |
Copyright terms: Public domain | W3C validator |