| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4290 indcardi 9970 ledivge1le 13000 expcan 14110 ltexp2 14111 leexp1a 14116 expnbnd 14173 cshf1 14751 rtrclreclem4 15003 relexpindlem 15005 ncoprmlnprm 16674 rnglidlmcl 21102 xrsdsreclblem 21305 matecl 22288 scmateALT 22375 riinopn 22771 neindisj2 22986 filufint 23783 tsmsxp 24018 ewlkle 29509 uspgr2wlkeq 29549 spthonepeq 29655 wwlksm1edg 29784 clwwisshclwws 29917 clwwlknwwlksn 29940 clwwlkinwwlk 29942 wwlksext2clwwlk 29959 3vfriswmgr 30180 homco1 31703 homulass 31704 hoadddir 31706 satffunlem 35361 mblfinlem3 37626 zerdivemp1x 37914 athgt 39423 psubspi 39714 paddasslem14 39800 eluzge0nn0 47286 iccpartigtl 47397 lighneal 47585 uhgrimisgrgriclem 47903 uhgrimisgrgric 47904 clnbgrgrimlem 47906 uspgrlimlem3 47962 clnbgr3stgrgrlic 47984 gpgusgralem 48020 |
| Copyright terms: Public domain | W3C validator |