| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4294 indcardi 9994 ledivge1le 13024 expcan 14134 ltexp2 14135 leexp1a 14140 expnbnd 14197 cshf1 14775 rtrclreclem4 15027 relexpindlem 15029 ncoprmlnprm 16698 rnglidlmcl 21126 xrsdsreclblem 21329 matecl 22312 scmateALT 22399 riinopn 22795 neindisj2 23010 filufint 23807 tsmsxp 24042 ewlkle 29533 uspgr2wlkeq 29574 spthonepeq 29682 wwlksm1edg 29811 clwwisshclwws 29944 clwwlknwwlksn 29967 clwwlkinwwlk 29969 wwlksext2clwwlk 29986 3vfriswmgr 30207 homco1 31730 homulass 31731 hoadddir 31733 satffunlem 35388 mblfinlem3 37653 zerdivemp1x 37941 athgt 39450 psubspi 39741 paddasslem14 39827 eluzge0nn0 47313 iccpartigtl 47424 lighneal 47612 uhgrimisgrgriclem 47930 uhgrimisgrgric 47931 clnbgrgrimlem 47933 uspgrlimlem3 47989 clnbgr3stgrgrlic 48011 gpgusgralem 48047 |
| Copyright terms: Public domain | W3C validator |