| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4297 indcardi 10001 ledivge1le 13031 expcan 14141 ltexp2 14142 leexp1a 14147 expnbnd 14204 cshf1 14782 rtrclreclem4 15034 relexpindlem 15036 ncoprmlnprm 16705 rnglidlmcl 21133 xrsdsreclblem 21336 matecl 22319 scmateALT 22406 riinopn 22802 neindisj2 23017 filufint 23814 tsmsxp 24049 ewlkle 29540 uspgr2wlkeq 29581 spthonepeq 29689 wwlksm1edg 29818 clwwisshclwws 29951 clwwlknwwlksn 29974 clwwlkinwwlk 29976 wwlksext2clwwlk 29993 3vfriswmgr 30214 homco1 31737 homulass 31738 hoadddir 31740 satffunlem 35395 mblfinlem3 37660 zerdivemp1x 37948 athgt 39457 psubspi 39748 paddasslem14 39834 eluzge0nn0 47317 iccpartigtl 47428 lighneal 47616 uhgrimisgrgriclem 47934 uhgrimisgrgric 47935 clnbgrgrimlem 47937 uspgrlimlem3 47993 clnbgr3stgrgrlic 48015 gpgusgralem 48051 |
| Copyright terms: Public domain | W3C validator |