Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 407 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3an1rs 1358 reupick2 4254 indcardi 9797 ledivge1le 12801 expcan 13887 ltexp2 13888 leexp1a 13893 expnbnd 13947 cshf1 14523 rtrclreclem4 14772 relexpindlem 14774 ncoprmlnprm 16432 xrsdsreclblem 20644 matecl 21574 scmateALT 21661 riinopn 22057 neindisj2 22274 filufint 23071 tsmsxp 23306 ewlkle 27972 uspgr2wlkeq 28013 spthonepeq 28120 wwlksm1edg 28246 clwwisshclwws 28379 clwwlknwwlksn 28402 clwwlkinwwlk 28404 wwlksext2clwwlk 28421 3vfriswmgr 28642 homco1 30163 homulass 30164 hoadddir 30166 satffunlem 33363 mblfinlem3 35816 zerdivemp1x 36105 athgt 37470 psubspi 37761 paddasslem14 37847 eluzge0nn0 44804 iccpartigtl 44875 lighneal 45063 isomgrsym 45288 |
Copyright terms: Public domain | W3C validator |