| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4306 indcardi 10055 ledivge1le 13080 expcan 14187 ltexp2 14188 leexp1a 14193 expnbnd 14250 cshf1 14828 rtrclreclem4 15080 relexpindlem 15082 ncoprmlnprm 16747 rnglidlmcl 21177 xrsdsreclblem 21380 matecl 22363 scmateALT 22450 riinopn 22846 neindisj2 23061 filufint 23858 tsmsxp 24093 ewlkle 29585 uspgr2wlkeq 29626 spthonepeq 29734 wwlksm1edg 29863 clwwisshclwws 29996 clwwlknwwlksn 30019 clwwlkinwwlk 30021 wwlksext2clwwlk 30038 3vfriswmgr 30259 homco1 31782 homulass 31783 hoadddir 31785 satffunlem 35423 mblfinlem3 37683 zerdivemp1x 37971 athgt 39475 psubspi 39766 paddasslem14 39852 eluzge0nn0 47341 iccpartigtl 47437 lighneal 47625 uhgrimisgrgriclem 47943 uhgrimisgrgric 47944 clnbgrgrimlem 47946 uspgrlimlem3 48002 clnbgr3stgrgrlic 48024 gpgusgralem 48060 |
| Copyright terms: Public domain | W3C validator |