| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version | ||
| Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | 3imp 1110 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3an1rs 1360 reupick2 4282 indcardi 9935 ledivge1le 12966 expcan 14076 ltexp2 14077 leexp1a 14082 expnbnd 14139 cshf1 14716 rtrclreclem4 14968 relexpindlem 14970 ncoprmlnprm 16639 rnglidlmcl 21123 xrsdsreclblem 21319 matecl 22310 scmateALT 22397 riinopn 22793 neindisj2 23008 filufint 23805 tsmsxp 24040 ewlkle 29551 uspgr2wlkeq 29591 spthonepeq 29697 wwlksm1edg 29826 clwwisshclwws 29959 clwwlknwwlksn 29982 clwwlkinwwlk 29984 wwlksext2clwwlk 30001 3vfriswmgr 30222 homco1 31745 homulass 31746 hoadddir 31748 satffunlem 35374 mblfinlem3 37639 zerdivemp1x 37927 athgt 39435 psubspi 39726 paddasslem14 39812 eluzge0nn0 47296 iccpartigtl 47407 lighneal 47595 uhgrimisgrgriclem 47914 uhgrimisgrgric 47915 clnbgrgrimlem 47917 uspgrlimlem3 47974 clnbgr3stgrgrlic 48004 gpgusgralem 48040 |
| Copyright terms: Public domain | W3C validator |