Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp1 | Structured version Visualization version GIF version |
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3imp1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | 3imp 1109 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
3 | 2 | imp 406 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3an1rs 1357 reupick2 4251 indcardi 9728 ledivge1le 12730 expcan 13815 ltexp2 13816 leexp1a 13821 expnbnd 13875 cshf1 14451 rtrclreclem4 14700 relexpindlem 14702 ncoprmlnprm 16360 xrsdsreclblem 20556 matecl 21482 scmateALT 21569 riinopn 21965 neindisj2 22182 filufint 22979 tsmsxp 23214 ewlkle 27875 uspgr2wlkeq 27915 spthonepeq 28021 wwlksm1edg 28147 clwwisshclwws 28280 clwwlknwwlksn 28303 clwwlkinwwlk 28305 wwlksext2clwwlk 28322 3vfriswmgr 28543 homco1 30064 homulass 30065 hoadddir 30067 satffunlem 33263 mblfinlem3 35743 zerdivemp1x 36032 athgt 37397 psubspi 37688 paddasslem14 37774 eluzge0nn0 44692 iccpartigtl 44763 lighneal 44951 isomgrsym 45176 |
Copyright terms: Public domain | W3C validator |