Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 33145
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐶   𝑤,𝐷   𝑤,𝑁   𝑤,𝑄   𝑤,𝑆
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑢 𝑣 𝑐 𝑒 𝑓 𝑔 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑣 ∈ Word ran (pmTrsp‘𝐷))
2 lencl 14581 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑣) ∈ ℕ0)
32ad2antlr 726 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℕ0)
43nn0zd 12665 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℤ)
5 simpr 484 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 = (𝑆 Σg 𝑣))
65fveq2d 6924 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)))
7 simplll 774 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
8 simpllr 775 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEven‘𝐷)
108, 9eleqtrdi 2854 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ (pmEven‘𝐷))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
12 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2740 . . . . . . . . 9 (pmSgn‘𝐷) = (pmSgn‘𝐷)
1411, 12, 13psgnevpm 21630 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑄) = 1)
157, 10, 14syl2anc 583 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = 1)
16 eqid 2740 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
1711, 16, 13psgnvalii 19551 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
187, 1, 17syl2anc 583 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
196, 15, 183eqtr3rd 2789 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (-1↑(♯‘𝑣)) = 1)
20 m1exp1 16424 . . . . . . 7 ((♯‘𝑣) ∈ ℤ → ((-1↑(♯‘𝑣)) = 1 ↔ 2 ∥ (♯‘𝑣)))
2120biimpa 476 . . . . . 6 (((♯‘𝑣) ∈ ℤ ∧ (-1↑(♯‘𝑣)) = 1) → 2 ∥ (♯‘𝑣))
224, 19, 21syl2anc 583 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 2 ∥ (♯‘𝑣))
23 oveq2 7456 . . . . . . . . . 10 (𝑥 = ∅ → (𝑆 Σg 𝑥) = (𝑆 Σg ∅))
2423eqeq1d 2742 . . . . . . . . 9 (𝑥 = ∅ → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2524rexbidv 3185 . . . . . . . 8 (𝑥 = ∅ → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2625imbi2d 340 . . . . . . 7 (𝑥 = ∅ → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))))
27 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑢))
2827eqeq1d 2742 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
2928rexbidv 3185 . . . . . . . 8 (𝑥 = 𝑢 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
3029imbi2d 340 . . . . . . 7 (𝑥 = 𝑢 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))))
31 oveq2 7456 . . . . . . . . . 10 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (𝑆 Σg 𝑥) = (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)))
3231eqeq1d 2742 . . . . . . . . 9 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3332rexbidv 3185 . . . . . . . 8 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3433imbi2d 340 . . . . . . 7 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
35 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑣))
3635eqeq1d 2742 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3736rexbidv 3185 . . . . . . . 8 (𝑥 = 𝑣 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3837imbi2d 340 . . . . . . 7 (𝑥 = 𝑣 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))))
39 wrd0 14587 . . . . . . . . 9 ∅ ∈ Word 𝐶
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin → ∅ ∈ Word 𝐶)
41 simpr 484 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → 𝑤 = ∅)
4241oveq2d 7464 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
4342eqeq2d 2751 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → ((𝑆 Σg ∅) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg ∅)))
44 eqidd 2741 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆 Σg ∅) = (𝑆 Σg ∅))
4540, 43, 44rspcedvd 3637 . . . . . . 7 (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))
46 ccatcl 14622 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐶𝑐 ∈ Word 𝐶) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
4746ad5ant24 760 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
48 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑤 = (𝑣 ++ 𝑐) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑣 ++ 𝑐)))
4948eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑤 = (𝑣 ++ 𝑐) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
5049adantl 481 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) ∧ 𝑤 = (𝑣 ++ 𝑐)) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
51 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
52 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
5352ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝐷 ∈ Fin)
5411symggrp 19442 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
55 grpmnd 18980 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 19511 . . . . . . . . . . . . . . . . . . 19 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆))
59 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6059ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6158, 60sseldd 4009 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ (Base‘𝑆))
62 simp-6r 787 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ ran (pmTrsp‘𝐷))
6358, 62sseldd 4009 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ (Base‘𝑆))
64 eqid 2740 . . . . . . . . . . . . . . . . . 18 (+g𝑆) = (+g𝑆)
6512, 64gsumws2 18877 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Base‘𝑆) ∧ 𝑗 ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
6656, 61, 63, 65syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
6866, 67eqtrd 2780 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑆 Σg 𝑐))
6951, 68oveq12d 7466 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
70 sswrd 14570 . . . . . . . . . . . . . . . . 17 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
72 simp-7l 788 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word ran (pmTrsp‘𝐷))
7371, 72sseldd 4009 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word (Base‘𝑆))
7461, 63s2cld 14920 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆))
7512, 64gsumccat 18876 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑢 ∈ Word (Base‘𝑆) ∧ ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
7656, 73, 74, 75syl3anc 1371 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑀 “ (♯ “ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCyc‘𝐷)
7978imaeq1i 6086 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ (♯ “ {3})) = ((toCyc‘𝐷) “ (♯ “ {3}))
8077, 79eqtri 2768 . . . . . . . . . . . . . . . . . . 19 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
8180, 9cyc3evpm 33143 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝐶𝐴)
8211, 12evpmss 21627 . . . . . . . . . . . . . . . . . . 19 (pmEven‘𝐷) ⊆ (Base‘𝑆)
839, 82eqsstri 4043 . . . . . . . . . . . . . . . . . 18 𝐴 ⊆ (Base‘𝑆)
8481, 83sstrdi 4021 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin → 𝐶 ⊆ (Base‘𝑆))
85 sswrd 14570 . . . . . . . . . . . . . . . . 17 (𝐶 ⊆ (Base‘𝑆) → Word 𝐶 ⊆ Word (Base‘𝑆))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word 𝐶 ⊆ Word (Base‘𝑆))
87 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word 𝐶)
8886, 87sseldd 4009 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word (Base‘𝑆))
89 simplr 768 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word 𝐶)
9086, 89sseldd 4009 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word (Base‘𝑆))
9112, 64gsumccat 18876 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Base‘𝑆) ∧ 𝑐 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9256, 88, 90, 91syl3anc 1371 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9369, 76, 923eqtr4d 2790 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3637 . . . . . . . . . . . 12 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐷)
96 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝐷)
97 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑓𝐷)
98 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔𝐷)
99 simplr 768 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷)
100 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
101100simprd 495 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))
102 simprr 772 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑗 = (𝑀‘⟨“𝑔”⟩))
10352ad6antr 735 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷 ∈ Fin)
104100simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝑓)
105 simprl 770 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 33144 . . . . . . . . . . . . . 14 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
107 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝐷 ∈ Fin)
108 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝑗 ∈ ran (pmTrsp‘𝐷))
10916, 78trsp2cyc 33116 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
110107, 108, 109syl2anc 583 . . . . . . . . . . . . . 14 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
111106, 110r19.29vva 3222 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11216, 78trsp2cyc 33116 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
11352, 59, 112syl2anc 583 . . . . . . . . . . . . 13 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
114111, 113r19.29vva 3222 . . . . . . . . . . . 12 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11594, 114r19.29a 3168 . . . . . . . . . . 11 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
116115adantl3r 749 . . . . . . . . . 10 (((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
117 simpr 484 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → 𝐷 ∈ Fin)
118 simplr 768 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
120 oveq2 7456 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
121120eqeq2d 2751 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
122121cbvrexvw 3244 . . . . . . . . . . 11 (∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
123119, 122sylibr 234 . . . . . . . . . 10 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
124116, 123r19.29a 3168 . . . . . . . . 9 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
125124ex 412 . . . . . . . 8 ((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
126125ex3 1346 . . . . . . 7 ((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
12726, 30, 34, 38, 45, 126wrdt2ind 32920 . . . . . 6 ((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
128127imp 406 . . . . 5 (((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1291, 22, 7, 128syl21anc 837 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1305eqeq1d 2742 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (𝑄 = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
131130rexbidv 3185 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
132129, 131mpbird 257 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
13383sseli 4004 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝑆))
13411, 12, 16psgnfitr 19559 . . . . 5 (𝐷 ∈ Fin → (𝑄 ∈ (Base‘𝑆) ↔ ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)))
135134biimpa 476 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Base‘𝑆)) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
136133, 135sylan2 592 . . 3 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
137132, 136r19.29a 3168 . 2 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
138 simpr 484 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 = (𝑆 Σg 𝑤))
13911altgnsg 33142 . . . . . . . . 9 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
1409, 139eqeltrid 2848 . . . . . . . 8 (𝐷 ∈ Fin → 𝐴 ∈ (NrmSGrp‘𝑆))
141 nsgsubg 19198 . . . . . . . 8 (𝐴 ∈ (NrmSGrp‘𝑆) → 𝐴 ∈ (SubGrp‘𝑆))
142 subgsubm 19188 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝑆) → 𝐴 ∈ (SubMnd‘𝑆))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin → 𝐴 ∈ (SubMnd‘𝑆))
144143adantr 480 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝐴 ∈ (SubMnd‘𝑆))
145 sswrd 14570 . . . . . . . 8 (𝐶𝐴 → Word 𝐶 ⊆ Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴)
147146sselda 4008 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝑤 ∈ Word 𝐴)
148 gsumwsubmcl 18872 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑆) ∧ 𝑤 ∈ Word 𝐴) → (𝑆 Σg 𝑤) ∈ 𝐴)
149144, 147, 148syl2anc 583 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → (𝑆 Σg 𝑤) ∈ 𝐴)
150149adantr 480 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → (𝑆 Σg 𝑤) ∈ 𝐴)
151138, 150eqeltrd 2844 . . 3 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
152151r19.29an 3164 . 2 ((𝐷 ∈ Fin ∧ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
153137, 152impbida 800 1 (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  ccnv 5699  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185  -cneg 11521  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cexp 14112  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs2 14890  cdvds 16302  Basecbs 17258  +gcplusg 17311   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160  NrmSGrpcnsg 19161  SymGrpcsymg 19410  pmTrspcpmtr 19483  pmSgncpsgn 19531  pmEvencevpm 19532  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-csh 14837  df-s2 14897  df-s3 14898  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-ghm 19253  df-gim 19299  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-cnfld 21388  df-tocyc 33100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator