Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 32578
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
cyc3genpm.a 𝐴 = (pmEvenβ€˜π·)
cyc3genpm.s 𝑆 = (SymGrpβ€˜π·)
cyc3genpm.n 𝑁 = (β™―β€˜π·)
cyc3genpm.m 𝑀 = (toCycβ€˜π·)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)))
Distinct variable groups:   𝑀,𝐴   𝑀,𝐢   𝑀,𝐷   𝑀,𝑁   𝑀,𝑄   𝑀,𝑆
Allowed substitution hint:   𝑀(𝑀)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑒 𝑣 𝑐 𝑒 𝑓 𝑔 β„Ž 𝑗 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑣 ∈ Word ran (pmTrspβ€˜π·))
2 lencl 14488 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrspβ€˜π·) β†’ (β™―β€˜π‘£) ∈ β„•0)
32ad2antlr 724 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (β™―β€˜π‘£) ∈ β„•0)
43nn0zd 12589 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (β™―β€˜π‘£) ∈ β„€)
5 simpr 484 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 = (𝑆 Ξ£g 𝑣))
65fveq2d 6896 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)))
7 simplll 772 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝐷 ∈ Fin)
8 simpllr 773 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 ∈ 𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEvenβ€˜π·)
108, 9eleqtrdi 2842 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 ∈ (pmEvenβ€˜π·))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrpβ€˜π·)
12 eqid 2731 . . . . . . . . 9 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
13 eqid 2731 . . . . . . . . 9 (pmSgnβ€˜π·) = (pmSgnβ€˜π·)
1411, 12, 13psgnevpm 21362 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEvenβ€˜π·)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = 1)
157, 10, 14syl2anc 583 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = 1)
16 eqid 2731 . . . . . . . . 9 ran (pmTrspβ€˜π·) = ran (pmTrspβ€˜π·)
1711, 16, 13psgnvalii 19419 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) β†’ ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)) = (-1↑(β™―β€˜π‘£)))
187, 1, 17syl2anc 583 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)) = (-1↑(β™―β€˜π‘£)))
196, 15, 183eqtr3rd 2780 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (-1↑(β™―β€˜π‘£)) = 1)
20 m1exp1 16324 . . . . . . 7 ((β™―β€˜π‘£) ∈ β„€ β†’ ((-1↑(β™―β€˜π‘£)) = 1 ↔ 2 βˆ₯ (β™―β€˜π‘£)))
2120biimpa 476 . . . . . 6 (((β™―β€˜π‘£) ∈ β„€ ∧ (-1↑(β™―β€˜π‘£)) = 1) β†’ 2 βˆ₯ (β™―β€˜π‘£))
224, 19, 21syl2anc 583 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 2 βˆ₯ (β™―β€˜π‘£))
23 oveq2 7420 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g βˆ…))
2423eqeq1d 2733 . . . . . . . . 9 (π‘₯ = βˆ… β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀)))
2524rexbidv 3177 . . . . . . . 8 (π‘₯ = βˆ… β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀)))
2625imbi2d 339 . . . . . . 7 (π‘₯ = βˆ… β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀))))
27 oveq2 7420 . . . . . . . . . 10 (π‘₯ = 𝑒 β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑒))
2827eqeq1d 2733 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
2928rexbidv 3177 . . . . . . . 8 (π‘₯ = 𝑒 β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
3029imbi2d 339 . . . . . . 7 (π‘₯ = 𝑒 β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))))
31 oveq2 7420 . . . . . . . . . 10 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)))
3231eqeq1d 2733 . . . . . . . . 9 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
3332rexbidv 3177 . . . . . . . 8 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
3433imbi2d 339 . . . . . . 7 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))))
35 oveq2 7420 . . . . . . . . . 10 (π‘₯ = 𝑣 β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑣))
3635eqeq1d 2733 . . . . . . . . 9 (π‘₯ = 𝑣 β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
3736rexbidv 3177 . . . . . . . 8 (π‘₯ = 𝑣 β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
3837imbi2d 339 . . . . . . 7 (π‘₯ = 𝑣 β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))))
39 wrd0 14494 . . . . . . . . 9 βˆ… ∈ Word 𝐢
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin β†’ βˆ… ∈ Word 𝐢)
41 simpr 484 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ 𝑀 = βˆ…)
4241oveq2d 7428 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ (𝑆 Ξ£g 𝑀) = (𝑆 Ξ£g βˆ…))
4342eqeq2d 2742 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ ((𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g βˆ…)))
44 eqidd 2732 . . . . . . . 8 (𝐷 ∈ Fin β†’ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g βˆ…))
4540, 43, 44rspcedvd 3615 . . . . . . 7 (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀))
46 ccatcl 14529 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐢 ∧ 𝑐 ∈ Word 𝐢) β†’ (𝑣 ++ 𝑐) ∈ Word 𝐢)
4746ad5ant24 758 . . . . . . . . . . . . 13 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑣 ++ 𝑐) ∈ Word 𝐢)
48 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑀 = (𝑣 ++ 𝑐) β†’ (𝑆 Ξ£g 𝑀) = (𝑆 Ξ£g (𝑣 ++ 𝑐)))
4948eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑀 = (𝑣 ++ 𝑐) β†’ ((𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐))))
5049adantl 481 . . . . . . . . . . . . 13 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) ∧ 𝑀 = (𝑣 ++ 𝑐)) β†’ ((𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐))))
51 simpllr 773 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣))
52 simpllr 773 . . . . . . . . . . . . . . . . . . 19 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ 𝐷 ∈ Fin)
5352ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝐷 ∈ Fin)
5411symggrp 19310 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin β†’ 𝑆 ∈ Grp)
55 grpmnd 18863 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp β†’ 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 19379 . . . . . . . . . . . . . . . . . . 19 ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†))
59 simp-5r 783 . . . . . . . . . . . . . . . . . . 19 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ 𝑖 ∈ ran (pmTrspβ€˜π·))
6059ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑖 ∈ ran (pmTrspβ€˜π·))
6158, 60sseldd 3984 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑖 ∈ (Baseβ€˜π‘†))
62 simp-6r 785 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑗 ∈ ran (pmTrspβ€˜π·))
6358, 62sseldd 3984 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑗 ∈ (Baseβ€˜π‘†))
64 eqid 2731 . . . . . . . . . . . . . . . . . 18 (+gβ€˜π‘†) = (+gβ€˜π‘†)
6512, 64gsumws2 18760 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Baseβ€˜π‘†) ∧ 𝑗 ∈ (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑖(+gβ€˜π‘†)𝑗))
6656, 61, 63, 65syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑖(+gβ€˜π‘†)𝑗))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
6866, 67eqtrd 2771 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑆 Ξ£g 𝑐))
6951, 68oveq12d 7430 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
70 sswrd 14477 . . . . . . . . . . . . . . . . 17 (ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†) β†’ Word ran (pmTrspβ€˜π·) βŠ† Word (Baseβ€˜π‘†))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ Word ran (pmTrspβ€˜π·) βŠ† Word (Baseβ€˜π‘†))
72 simp-7l 786 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑒 ∈ Word ran (pmTrspβ€˜π·))
7371, 72sseldd 3984 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑒 ∈ Word (Baseβ€˜π‘†))
7461, 63s2cld 14827 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ βŸ¨β€œπ‘–π‘—β€βŸ© ∈ Word (Baseβ€˜π‘†))
7512, 64gsumccat 18759 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑒 ∈ Word (Baseβ€˜π‘†) ∧ βŸ¨β€œπ‘–π‘—β€βŸ© ∈ Word (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)))
7656, 73, 74, 75syl3anc 1370 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCycβ€˜π·)
7978imaeq1i 6057 . . . . . . . . . . . . . . . . . . . 20 (𝑀 β€œ (β—‘β™― β€œ {3})) = ((toCycβ€˜π·) β€œ (β—‘β™― β€œ {3}))
8077, 79eqtri 2759 . . . . . . . . . . . . . . . . . . 19 𝐢 = ((toCycβ€˜π·) β€œ (β—‘β™― β€œ {3}))
8180, 9cyc3evpm 32576 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin β†’ 𝐢 βŠ† 𝐴)
8211, 12evpmss 21359 . . . . . . . . . . . . . . . . . . 19 (pmEvenβ€˜π·) βŠ† (Baseβ€˜π‘†)
839, 82eqsstri 4017 . . . . . . . . . . . . . . . . . 18 𝐴 βŠ† (Baseβ€˜π‘†)
8481, 83sstrdi 3995 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin β†’ 𝐢 βŠ† (Baseβ€˜π‘†))
85 sswrd 14477 . . . . . . . . . . . . . . . . 17 (𝐢 βŠ† (Baseβ€˜π‘†) β†’ Word 𝐢 βŠ† Word (Baseβ€˜π‘†))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ Word 𝐢 βŠ† Word (Baseβ€˜π‘†))
87 simp-4r 781 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑣 ∈ Word 𝐢)
8886, 87sseldd 3984 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑣 ∈ Word (Baseβ€˜π‘†))
89 simplr 766 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑐 ∈ Word 𝐢)
9086, 89sseldd 3984 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑐 ∈ Word (Baseβ€˜π‘†))
9112, 64gsumccat 18759 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Baseβ€˜π‘†) ∧ 𝑐 ∈ Word (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g (𝑣 ++ 𝑐)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
9256, 88, 90, 91syl3anc 1370 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑣 ++ 𝑐)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
9369, 76, 923eqtr4d 2781 . . . . . . . . . . . . 13 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3615 . . . . . . . . . . . 12 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (β™―β€˜π·)
96 simp-6r 785 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑒 ∈ 𝐷)
97 simp-5r 783 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑓 ∈ 𝐷)
98 simpllr 773 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑔 ∈ 𝐷)
99 simplr 766 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ β„Ž ∈ 𝐷)
100 simp-4r 781 . . . . . . . . . . . . . . . 16 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
101100simprd 495 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))
102 simprr 770 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))
10352ad6antr 733 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝐷 ∈ Fin)
104100simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑒 β‰  𝑓)
105 simprl 768 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑔 β‰  β„Ž)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 32577 . . . . . . . . . . . . . 14 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
107 simp-6r 785 . . . . . . . . . . . . . . 15 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ 𝐷 ∈ Fin)
108 simp-7r 787 . . . . . . . . . . . . . . 15 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ 𝑗 ∈ ran (pmTrspβ€˜π·))
10916, 78trsp2cyc 32549 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) β†’ βˆƒπ‘” ∈ 𝐷 βˆƒβ„Ž ∈ 𝐷 (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©)))
110107, 108, 109syl2anc 583 . . . . . . . . . . . . . 14 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ βˆƒπ‘” ∈ 𝐷 βˆƒβ„Ž ∈ 𝐷 (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©)))
111106, 110r19.29vva 3212 . . . . . . . . . . . . 13 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
11216, 78trsp2cyc 32549 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) β†’ βˆƒπ‘’ ∈ 𝐷 βˆƒπ‘“ ∈ 𝐷 (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
11352, 59, 112syl2anc 583 . . . . . . . . . . . . 13 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘’ ∈ 𝐷 βˆƒπ‘“ ∈ 𝐷 (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
114111, 113r19.29vva 3212 . . . . . . . . . . . 12 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
11594, 114r19.29a 3161 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
116115adantl3r 747 . . . . . . . . . 10 (((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
117 simpr 484 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ 𝐷 ∈ Fin)
118 simplr 766 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))
120 oveq2 7420 . . . . . . . . . . . . 13 (𝑣 = 𝑀 β†’ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
121120eqeq2d 2742 . . . . . . . . . . . 12 (𝑣 = 𝑀 β†’ ((𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣) ↔ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
122121cbvrexvw 3234 . . . . . . . . . . 11 (βˆƒπ‘£ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))
123119, 122sylibr 233 . . . . . . . . . 10 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘£ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣))
124116, 123r19.29a 3161 . . . . . . . . 9 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
125124ex 412 . . . . . . . 8 ((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
126125ex3 1345 . . . . . . 7 ((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))))
12726, 30, 34, 38, 45, 126wrdt2ind 32381 . . . . . 6 ((𝑣 ∈ Word ran (pmTrspβ€˜π·) ∧ 2 βˆ₯ (β™―β€˜π‘£)) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
128127imp 406 . . . . 5 (((𝑣 ∈ Word ran (pmTrspβ€˜π·) ∧ 2 βˆ₯ (β™―β€˜π‘£)) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
1291, 22, 7, 128syl21anc 835 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
1305eqeq1d 2733 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (𝑄 = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
131130rexbidv 3177 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
132129, 131mpbird 256 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀))
13383sseli 3979 . . . 4 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜π‘†))
13411, 12, 16psgnfitr 19427 . . . . 5 (𝐷 ∈ Fin β†’ (𝑄 ∈ (Baseβ€˜π‘†) ↔ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣)))
135134biimpa 476 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Baseβ€˜π‘†)) β†’ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣))
136133, 135sylan2 592 . . 3 ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) β†’ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣))
137132, 136r19.29a 3161 . 2 ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) β†’ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀))
138 simpr 484 . . . 4 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 = (𝑆 Ξ£g 𝑀))
13911altgnsg 32575 . . . . . . . . 9 (𝐷 ∈ Fin β†’ (pmEvenβ€˜π·) ∈ (NrmSGrpβ€˜π‘†))
1409, 139eqeltrid 2836 . . . . . . . 8 (𝐷 ∈ Fin β†’ 𝐴 ∈ (NrmSGrpβ€˜π‘†))
141 nsgsubg 19075 . . . . . . . 8 (𝐴 ∈ (NrmSGrpβ€˜π‘†) β†’ 𝐴 ∈ (SubGrpβ€˜π‘†))
142 subgsubm 19065 . . . . . . . 8 (𝐴 ∈ (SubGrpβ€˜π‘†) β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
144143adantr 480 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
145 sswrd 14477 . . . . . . . 8 (𝐢 βŠ† 𝐴 β†’ Word 𝐢 βŠ† Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin β†’ Word 𝐢 βŠ† Word 𝐴)
147146sselda 3983 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ 𝑀 ∈ Word 𝐴)
148 gsumwsubmcl 18755 . . . . . 6 ((𝐴 ∈ (SubMndβ€˜π‘†) ∧ 𝑀 ∈ Word 𝐴) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
149144, 147, 148syl2anc 583 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
150149adantr 480 . . . 4 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
151138, 150eqeltrd 2832 . . 3 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 ∈ 𝐴)
152151r19.29an 3157 . 2 ((𝐷 ∈ Fin ∧ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 ∈ 𝐴)
153137, 152impbida 798 1 (𝐷 ∈ Fin β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆƒwrex 3069   βŠ† wss 3949  βˆ…c0 4323  {csn 4629   class class class wbr 5149  β—‘ccnv 5676  ran crn 5678   β€œ cima 5680  β€˜cfv 6544  (class class class)co 7412  Fincfn 8942  1c1 11114  -cneg 11450  2c2 12272  3c3 12273  β„•0cn0 12477  β„€cz 12563  β†‘cexp 14032  β™―chash 14295  Word cword 14469   ++ cconcat 14525  βŸ¨β€œcs2 14797   βˆ₯ cdvds 16202  Basecbs 17149  +gcplusg 17202   Ξ£g cgsu 17391  Mndcmnd 18660  SubMndcsubmnd 18705  Grpcgrp 18856  SubGrpcsubg 19037  NrmSGrpcnsg 19038  SymGrpcsymg 19276  pmTrspcpmtr 19351  pmSgncpsgn 19399  pmEvencevpm 19400  toCycctocyc 32532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-reg 9590  ax-ac2 10461  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-card 9937  df-ac 10114  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-xnn0 12550  df-z 12564  df-dec 12683  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-hash 14296  df-word 14470  df-lsw 14518  df-concat 14526  df-s1 14551  df-substr 14596  df-pfx 14626  df-splice 14705  df-reverse 14714  df-csh 14744  df-s2 14804  df-s3 14805  df-dvds 16203  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-0g 17392  df-gsum 17393  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-efmnd 18787  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-nsg 19041  df-ghm 19129  df-gim 19174  df-oppg 19252  df-symg 19277  df-pmtr 19352  df-psgn 19401  df-evpm 19402  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-drng 20503  df-cnfld 21146  df-tocyc 32533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator