Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 30794
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐶   𝑤,𝐷   𝑤,𝑁   𝑤,𝑄   𝑤,𝑆
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑢 𝑣 𝑐 𝑒 𝑓 𝑔 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑣 ∈ Word ran (pmTrsp‘𝐷))
2 lencl 13883 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑣) ∈ ℕ0)
32ad2antlr 725 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℕ0)
43nn0zd 12086 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℤ)
5 simpr 487 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 = (𝑆 Σg 𝑣))
65fveq2d 6674 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)))
7 simplll 773 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
8 simpllr 774 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEven‘𝐷)
108, 9eleqtrdi 2923 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ (pmEven‘𝐷))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
12 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2821 . . . . . . . . 9 (pmSgn‘𝐷) = (pmSgn‘𝐷)
1411, 12, 13psgnevpm 20733 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑄) = 1)
157, 10, 14syl2anc 586 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = 1)
16 eqid 2821 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
1711, 16, 13psgnvalii 18637 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
187, 1, 17syl2anc 586 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
196, 15, 183eqtr3rd 2865 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (-1↑(♯‘𝑣)) = 1)
20 m1exp1 15727 . . . . . . 7 ((♯‘𝑣) ∈ ℤ → ((-1↑(♯‘𝑣)) = 1 ↔ 2 ∥ (♯‘𝑣)))
2120biimpa 479 . . . . . 6 (((♯‘𝑣) ∈ ℤ ∧ (-1↑(♯‘𝑣)) = 1) → 2 ∥ (♯‘𝑣))
224, 19, 21syl2anc 586 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 2 ∥ (♯‘𝑣))
23 oveq2 7164 . . . . . . . . . 10 (𝑥 = ∅ → (𝑆 Σg 𝑥) = (𝑆 Σg ∅))
2423eqeq1d 2823 . . . . . . . . 9 (𝑥 = ∅ → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2524rexbidv 3297 . . . . . . . 8 (𝑥 = ∅ → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2625imbi2d 343 . . . . . . 7 (𝑥 = ∅ → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))))
27 oveq2 7164 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑢))
2827eqeq1d 2823 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
2928rexbidv 3297 . . . . . . . 8 (𝑥 = 𝑢 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
3029imbi2d 343 . . . . . . 7 (𝑥 = 𝑢 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))))
31 oveq2 7164 . . . . . . . . . 10 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (𝑆 Σg 𝑥) = (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)))
3231eqeq1d 2823 . . . . . . . . 9 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3332rexbidv 3297 . . . . . . . 8 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3433imbi2d 343 . . . . . . 7 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
35 oveq2 7164 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑣))
3635eqeq1d 2823 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3736rexbidv 3297 . . . . . . . 8 (𝑥 = 𝑣 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3837imbi2d 343 . . . . . . 7 (𝑥 = 𝑣 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))))
39 wrd0 13889 . . . . . . . . 9 ∅ ∈ Word 𝐶
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin → ∅ ∈ Word 𝐶)
41 simpr 487 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → 𝑤 = ∅)
4241oveq2d 7172 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
4342eqeq2d 2832 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → ((𝑆 Σg ∅) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg ∅)))
44 eqidd 2822 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆 Σg ∅) = (𝑆 Σg ∅))
4540, 43, 44rspcedvd 3626 . . . . . . 7 (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))
46 ccatcl 13926 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐶𝑐 ∈ Word 𝐶) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
4746ad5ant24 759 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
48 oveq2 7164 . . . . . . . . . . . . . . 15 (𝑤 = (𝑣 ++ 𝑐) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑣 ++ 𝑐)))
4948eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑤 = (𝑣 ++ 𝑐) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
5049adantl 484 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) ∧ 𝑤 = (𝑣 ++ 𝑐)) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
51 simpllr 774 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
52 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
5352ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝐷 ∈ Fin)
5411symggrp 18528 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
55 grpmnd 18110 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 18597 . . . . . . . . . . . . . . . . . . 19 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆))
59 simp-5r 784 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6059ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6158, 60sseldd 3968 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ (Base‘𝑆))
62 simp-6r 786 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ ran (pmTrsp‘𝐷))
6358, 62sseldd 3968 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ (Base‘𝑆))
64 eqid 2821 . . . . . . . . . . . . . . . . . 18 (+g𝑆) = (+g𝑆)
6512, 64gsumws2 18007 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Base‘𝑆) ∧ 𝑗 ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
6656, 61, 63, 65syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
67 simpr 487 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
6866, 67eqtrd 2856 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑆 Σg 𝑐))
6951, 68oveq12d 7174 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
70 sswrd 13870 . . . . . . . . . . . . . . . . 17 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
72 simp-7l 787 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word ran (pmTrsp‘𝐷))
7371, 72sseldd 3968 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word (Base‘𝑆))
7461, 63s2cld 14233 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆))
7512, 64gsumccat 18006 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑢 ∈ Word (Base‘𝑆) ∧ ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
7656, 73, 74, 75syl3anc 1367 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑀 “ (♯ “ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCyc‘𝐷)
7978imaeq1i 5926 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ (♯ “ {3})) = ((toCyc‘𝐷) “ (♯ “ {3}))
8077, 79eqtri 2844 . . . . . . . . . . . . . . . . . . 19 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
8180, 9cyc3evpm 30792 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝐶𝐴)
8211, 12evpmss 20730 . . . . . . . . . . . . . . . . . . 19 (pmEven‘𝐷) ⊆ (Base‘𝑆)
839, 82eqsstri 4001 . . . . . . . . . . . . . . . . . 18 𝐴 ⊆ (Base‘𝑆)
8481, 83sstrdi 3979 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin → 𝐶 ⊆ (Base‘𝑆))
85 sswrd 13870 . . . . . . . . . . . . . . . . 17 (𝐶 ⊆ (Base‘𝑆) → Word 𝐶 ⊆ Word (Base‘𝑆))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word 𝐶 ⊆ Word (Base‘𝑆))
87 simp-4r 782 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word 𝐶)
8886, 87sseldd 3968 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word (Base‘𝑆))
89 simplr 767 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word 𝐶)
9086, 89sseldd 3968 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word (Base‘𝑆))
9112, 64gsumccat 18006 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Base‘𝑆) ∧ 𝑐 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9256, 88, 90, 91syl3anc 1367 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9369, 76, 923eqtr4d 2866 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3626 . . . . . . . . . . . 12 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐷)
96 simp-6r 786 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝐷)
97 simp-5r 784 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑓𝐷)
98 simpllr 774 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔𝐷)
99 simplr 767 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷)
100 simp-4r 782 . . . . . . . . . . . . . . . 16 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
101100simprd 498 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))
102 simprr 771 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑗 = (𝑀‘⟨“𝑔”⟩))
10352ad6antr 734 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷 ∈ Fin)
104100simpld 497 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝑓)
105 simprl 769 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 30793 . . . . . . . . . . . . . 14 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
107 simp-6r 786 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝐷 ∈ Fin)
108 simp-7r 788 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝑗 ∈ ran (pmTrsp‘𝐷))
10916, 78trsp2cyc 30765 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
110107, 108, 109syl2anc 586 . . . . . . . . . . . . . 14 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
111106, 110r19.29vva 3336 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11216, 78trsp2cyc 30765 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
11352, 59, 112syl2anc 586 . . . . . . . . . . . . 13 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
114111, 113r19.29vva 3336 . . . . . . . . . . . 12 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11594, 114r19.29a 3289 . . . . . . . . . . 11 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
116115adantl3r 748 . . . . . . . . . 10 (((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
117 simpr 487 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → 𝐷 ∈ Fin)
118 simplr 767 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
120 oveq2 7164 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
121120eqeq2d 2832 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
122121cbvrexvw 3450 . . . . . . . . . . 11 (∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
123119, 122sylibr 236 . . . . . . . . . 10 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
124116, 123r19.29a 3289 . . . . . . . . 9 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
125124ex 415 . . . . . . . 8 ((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
126125ex3 1342 . . . . . . 7 ((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
12726, 30, 34, 38, 45, 126wrdt2ind 30627 . . . . . 6 ((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
128127imp 409 . . . . 5 (((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1291, 22, 7, 128syl21anc 835 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1305eqeq1d 2823 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (𝑄 = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
131130rexbidv 3297 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
132129, 131mpbird 259 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
13383sseli 3963 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝑆))
13411, 12, 16psgnfitr 18645 . . . . 5 (𝐷 ∈ Fin → (𝑄 ∈ (Base‘𝑆) ↔ ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)))
135134biimpa 479 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Base‘𝑆)) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
136133, 135sylan2 594 . . 3 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
137132, 136r19.29a 3289 . 2 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
138 simpr 487 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 = (𝑆 Σg 𝑤))
13911altgnsg 30791 . . . . . . . . 9 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
1409, 139eqeltrid 2917 . . . . . . . 8 (𝐷 ∈ Fin → 𝐴 ∈ (NrmSGrp‘𝑆))
141 nsgsubg 18310 . . . . . . . 8 (𝐴 ∈ (NrmSGrp‘𝑆) → 𝐴 ∈ (SubGrp‘𝑆))
142 subgsubm 18301 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝑆) → 𝐴 ∈ (SubMnd‘𝑆))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin → 𝐴 ∈ (SubMnd‘𝑆))
144143adantr 483 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝐴 ∈ (SubMnd‘𝑆))
145 sswrd 13870 . . . . . . . 8 (𝐶𝐴 → Word 𝐶 ⊆ Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴)
147146sselda 3967 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝑤 ∈ Word 𝐴)
148 gsumwsubmcl 18001 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑆) ∧ 𝑤 ∈ Word 𝐴) → (𝑆 Σg 𝑤) ∈ 𝐴)
149144, 147, 148syl2anc 586 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → (𝑆 Σg 𝑤) ∈ 𝐴)
150149adantr 483 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → (𝑆 Σg 𝑤) ∈ 𝐴)
151138, 150eqeltrd 2913 . . 3 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
152151r19.29an 3288 . 2 ((𝐷 ∈ Fin ∧ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
153137, 152impbida 799 1 (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936  c0 4291  {csn 4567   class class class wbr 5066  ccnv 5554  ran crn 5556  cima 5558  cfv 6355  (class class class)co 7156  Fincfn 8509  1c1 10538  -cneg 10871  2c2 11693  3c3 11694  0cn0 11898  cz 11982  cexp 13430  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs2 14203  cdvds 15607  Basecbs 16483  +gcplusg 16565   Σg cgsu 16714  Mndcmnd 17911  SubMndcsubmnd 17955  Grpcgrp 18103  SubGrpcsubg 18273  NrmSGrpcnsg 18274  SymGrpcsymg 18495  pmTrspcpmtr 18569  pmSgncpsgn 18617  pmEvencevpm 18618  toCycctocyc 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-csh 14151  df-s2 14210  df-s3 14211  df-dvds 15608  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-nsg 18277  df-ghm 18356  df-gim 18399  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-evpm 18620  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-cnfld 20546  df-tocyc 30749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator