Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 33107
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐶   𝑤,𝐷   𝑤,𝑁   𝑤,𝑄   𝑤,𝑆
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑢 𝑣 𝑐 𝑒 𝑓 𝑔 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑣 ∈ Word ran (pmTrsp‘𝐷))
2 lencl 14458 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑣) ∈ ℕ0)
32ad2antlr 727 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℕ0)
43nn0zd 12515 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℤ)
5 simpr 484 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 = (𝑆 Σg 𝑣))
65fveq2d 6830 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)))
7 simplll 774 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
8 simpllr 775 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEven‘𝐷)
108, 9eleqtrdi 2838 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ (pmEven‘𝐷))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
12 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2729 . . . . . . . . 9 (pmSgn‘𝐷) = (pmSgn‘𝐷)
1411, 12, 13psgnevpm 21514 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑄) = 1)
157, 10, 14syl2anc 584 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = 1)
16 eqid 2729 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
1711, 16, 13psgnvalii 19406 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
187, 1, 17syl2anc 584 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
196, 15, 183eqtr3rd 2773 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (-1↑(♯‘𝑣)) = 1)
20 m1exp1 16305 . . . . . . 7 ((♯‘𝑣) ∈ ℤ → ((-1↑(♯‘𝑣)) = 1 ↔ 2 ∥ (♯‘𝑣)))
2120biimpa 476 . . . . . 6 (((♯‘𝑣) ∈ ℤ ∧ (-1↑(♯‘𝑣)) = 1) → 2 ∥ (♯‘𝑣))
224, 19, 21syl2anc 584 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 2 ∥ (♯‘𝑣))
23 oveq2 7361 . . . . . . . . . 10 (𝑥 = ∅ → (𝑆 Σg 𝑥) = (𝑆 Σg ∅))
2423eqeq1d 2731 . . . . . . . . 9 (𝑥 = ∅ → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2524rexbidv 3153 . . . . . . . 8 (𝑥 = ∅ → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2625imbi2d 340 . . . . . . 7 (𝑥 = ∅ → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))))
27 oveq2 7361 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑢))
2827eqeq1d 2731 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
2928rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑢 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
3029imbi2d 340 . . . . . . 7 (𝑥 = 𝑢 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))))
31 oveq2 7361 . . . . . . . . . 10 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (𝑆 Σg 𝑥) = (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)))
3231eqeq1d 2731 . . . . . . . . 9 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3332rexbidv 3153 . . . . . . . 8 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3433imbi2d 340 . . . . . . 7 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
35 oveq2 7361 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑣))
3635eqeq1d 2731 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3736rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑣 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3837imbi2d 340 . . . . . . 7 (𝑥 = 𝑣 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))))
39 wrd0 14464 . . . . . . . . 9 ∅ ∈ Word 𝐶
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin → ∅ ∈ Word 𝐶)
41 simpr 484 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → 𝑤 = ∅)
4241oveq2d 7369 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
4342eqeq2d 2740 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → ((𝑆 Σg ∅) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg ∅)))
44 eqidd 2730 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆 Σg ∅) = (𝑆 Σg ∅))
4540, 43, 44rspcedvd 3581 . . . . . . 7 (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))
46 ccatcl 14499 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐶𝑐 ∈ Word 𝐶) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
4746ad5ant24 760 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
48 oveq2 7361 . . . . . . . . . . . . . . 15 (𝑤 = (𝑣 ++ 𝑐) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑣 ++ 𝑐)))
4948eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑤 = (𝑣 ++ 𝑐) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
5049adantl 481 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) ∧ 𝑤 = (𝑣 ++ 𝑐)) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
51 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
52 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
5352ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝐷 ∈ Fin)
5411symggrp 19297 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
55 grpmnd 18837 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 19366 . . . . . . . . . . . . . . . . . . 19 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆))
59 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6059ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6158, 60sseldd 3938 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ (Base‘𝑆))
62 simp-6r 787 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ ran (pmTrsp‘𝐷))
6358, 62sseldd 3938 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ (Base‘𝑆))
64 eqid 2729 . . . . . . . . . . . . . . . . . 18 (+g𝑆) = (+g𝑆)
6512, 64gsumws2 18734 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Base‘𝑆) ∧ 𝑗 ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
6656, 61, 63, 65syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
6866, 67eqtrd 2764 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑆 Σg 𝑐))
6951, 68oveq12d 7371 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
70 sswrd 14447 . . . . . . . . . . . . . . . . 17 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
72 simp-7l 788 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word ran (pmTrsp‘𝐷))
7371, 72sseldd 3938 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word (Base‘𝑆))
7461, 63s2cld 14796 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆))
7512, 64gsumccat 18733 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑢 ∈ Word (Base‘𝑆) ∧ ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
7656, 73, 74, 75syl3anc 1373 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑀 “ (♯ “ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCyc‘𝐷)
7978imaeq1i 6012 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ (♯ “ {3})) = ((toCyc‘𝐷) “ (♯ “ {3}))
8077, 79eqtri 2752 . . . . . . . . . . . . . . . . . . 19 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
8180, 9cyc3evpm 33105 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝐶𝐴)
8211, 12evpmss 21511 . . . . . . . . . . . . . . . . . . 19 (pmEven‘𝐷) ⊆ (Base‘𝑆)
839, 82eqsstri 3984 . . . . . . . . . . . . . . . . . 18 𝐴 ⊆ (Base‘𝑆)
8481, 83sstrdi 3950 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin → 𝐶 ⊆ (Base‘𝑆))
85 sswrd 14447 . . . . . . . . . . . . . . . . 17 (𝐶 ⊆ (Base‘𝑆) → Word 𝐶 ⊆ Word (Base‘𝑆))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word 𝐶 ⊆ Word (Base‘𝑆))
87 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word 𝐶)
8886, 87sseldd 3938 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word (Base‘𝑆))
89 simplr 768 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word 𝐶)
9086, 89sseldd 3938 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word (Base‘𝑆))
9112, 64gsumccat 18733 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Base‘𝑆) ∧ 𝑐 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9256, 88, 90, 91syl3anc 1373 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9369, 76, 923eqtr4d 2774 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3581 . . . . . . . . . . . 12 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐷)
96 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝐷)
97 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑓𝐷)
98 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔𝐷)
99 simplr 768 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷)
100 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
101100simprd 495 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))
102 simprr 772 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑗 = (𝑀‘⟨“𝑔”⟩))
10352ad6antr 736 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷 ∈ Fin)
104100simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝑓)
105 simprl 770 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 33106 . . . . . . . . . . . . . 14 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
107 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝐷 ∈ Fin)
108 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝑗 ∈ ran (pmTrsp‘𝐷))
10916, 78trsp2cyc 33078 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
110107, 108, 109syl2anc 584 . . . . . . . . . . . . . 14 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
111106, 110r19.29vva 3189 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11216, 78trsp2cyc 33078 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
11352, 59, 112syl2anc 584 . . . . . . . . . . . . 13 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
114111, 113r19.29vva 3189 . . . . . . . . . . . 12 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11594, 114r19.29a 3137 . . . . . . . . . . 11 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
116115adantl3r 750 . . . . . . . . . 10 (((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
117 simpr 484 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → 𝐷 ∈ Fin)
118 simplr 768 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
120 oveq2 7361 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
121120eqeq2d 2740 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
122121cbvrexvw 3208 . . . . . . . . . . 11 (∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
123119, 122sylibr 234 . . . . . . . . . 10 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
124116, 123r19.29a 3137 . . . . . . . . 9 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
125124ex 412 . . . . . . . 8 ((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
126125ex3 1347 . . . . . . 7 ((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
12726, 30, 34, 38, 45, 126wrdt2ind 32908 . . . . . 6 ((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
128127imp 406 . . . . 5 (((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1291, 22, 7, 128syl21anc 837 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1305eqeq1d 2731 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (𝑄 = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
131130rexbidv 3153 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
132129, 131mpbird 257 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
13383sseli 3933 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝑆))
13411, 12, 16psgnfitr 19414 . . . . 5 (𝐷 ∈ Fin → (𝑄 ∈ (Base‘𝑆) ↔ ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)))
135134biimpa 476 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Base‘𝑆)) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
136133, 135sylan2 593 . . 3 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
137132, 136r19.29a 3137 . 2 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
138 simpr 484 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 = (𝑆 Σg 𝑤))
13911altgnsg 33104 . . . . . . . . 9 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
1409, 139eqeltrid 2832 . . . . . . . 8 (𝐷 ∈ Fin → 𝐴 ∈ (NrmSGrp‘𝑆))
141 nsgsubg 19055 . . . . . . . 8 (𝐴 ∈ (NrmSGrp‘𝑆) → 𝐴 ∈ (SubGrp‘𝑆))
142 subgsubm 19045 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝑆) → 𝐴 ∈ (SubMnd‘𝑆))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin → 𝐴 ∈ (SubMnd‘𝑆))
144143adantr 480 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝐴 ∈ (SubMnd‘𝑆))
145 sswrd 14447 . . . . . . . 8 (𝐶𝐴 → Word 𝐶 ⊆ Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴)
147146sselda 3937 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝑤 ∈ Word 𝐴)
148 gsumwsubmcl 18729 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑆) ∧ 𝑤 ∈ Word 𝐴) → (𝑆 Σg 𝑤) ∈ 𝐴)
149144, 147, 148syl2anc 584 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → (𝑆 Σg 𝑤) ∈ 𝐴)
150149adantr 480 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → (𝑆 Σg 𝑤) ∈ 𝐴)
151138, 150eqeltrd 2828 . . 3 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
152151r19.29an 3133 . 2 ((𝐷 ∈ Fin ∧ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
153137, 152impbida 800 1 (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  ccnv 5622  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029  -cneg 11366  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cexp 13986  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs2 14766  cdvds 16181  Basecbs 17138  +gcplusg 17179   Σg cgsu 17362  Mndcmnd 18626  SubMndcsubmnd 18674  Grpcgrp 18830  SubGrpcsubg 19017  NrmSGrpcnsg 19018  SymGrpcsymg 19266  pmTrspcpmtr 19338  pmSgncpsgn 19386  pmEvencevpm 19387  toCycctocyc 33061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-splice 14674  df-reverse 14683  df-csh 14713  df-s2 14773  df-s3 14774  df-dvds 16182  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-nsg 19021  df-ghm 19110  df-gim 19156  df-oppg 19243  df-symg 19267  df-pmtr 19339  df-psgn 19388  df-evpm 19389  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-cnfld 21280  df-tocyc 33062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator