Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 33109
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐶 = (𝑀 “ (♯ “ {3}))
cyc3genpm.a 𝐴 = (pmEven‘𝐷)
cyc3genpm.s 𝑆 = (SymGrp‘𝐷)
cyc3genpm.n 𝑁 = (♯‘𝐷)
cyc3genpm.m 𝑀 = (toCyc‘𝐷)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐶   𝑤,𝐷   𝑤,𝑁   𝑤,𝑄   𝑤,𝑆
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑢 𝑣 𝑐 𝑒 𝑓 𝑔 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑣 ∈ Word ran (pmTrsp‘𝐷))
2 lencl 14549 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrsp‘𝐷) → (♯‘𝑣) ∈ ℕ0)
32ad2antlr 727 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℕ0)
43nn0zd 12612 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈ ℤ)
5 simpr 484 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 = (𝑆 Σg 𝑣))
65fveq2d 6879 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)))
7 simplll 774 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
8 simpllr 775 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEven‘𝐷)
108, 9eleqtrdi 2844 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ (pmEven‘𝐷))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
12 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2735 . . . . . . . . 9 (pmSgn‘𝐷) = (pmSgn‘𝐷)
1411, 12, 13psgnevpm 21547 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑄) = 1)
157, 10, 14syl2anc 584 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = 1)
16 eqid 2735 . . . . . . . . 9 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
1711, 16, 13psgnvalii 19488 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
187, 1, 17syl2anc 584 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) = (-1↑(♯‘𝑣)))
196, 15, 183eqtr3rd 2779 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (-1↑(♯‘𝑣)) = 1)
20 m1exp1 16393 . . . . . . 7 ((♯‘𝑣) ∈ ℤ → ((-1↑(♯‘𝑣)) = 1 ↔ 2 ∥ (♯‘𝑣)))
2120biimpa 476 . . . . . 6 (((♯‘𝑣) ∈ ℤ ∧ (-1↑(♯‘𝑣)) = 1) → 2 ∥ (♯‘𝑣))
224, 19, 21syl2anc 584 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 2 ∥ (♯‘𝑣))
23 oveq2 7411 . . . . . . . . . 10 (𝑥 = ∅ → (𝑆 Σg 𝑥) = (𝑆 Σg ∅))
2423eqeq1d 2737 . . . . . . . . 9 (𝑥 = ∅ → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2524rexbidv 3164 . . . . . . . 8 (𝑥 = ∅ → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤)))
2625imbi2d 340 . . . . . . 7 (𝑥 = ∅ → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))))
27 oveq2 7411 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑢))
2827eqeq1d 2737 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
2928rexbidv 3164 . . . . . . . 8 (𝑥 = 𝑢 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
3029imbi2d 340 . . . . . . 7 (𝑥 = 𝑢 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))))
31 oveq2 7411 . . . . . . . . . 10 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (𝑆 Σg 𝑥) = (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)))
3231eqeq1d 2737 . . . . . . . . 9 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3332rexbidv 3164 . . . . . . . 8 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
3433imbi2d 340 . . . . . . 7 (𝑥 = (𝑢 ++ ⟨“𝑖𝑗”⟩) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
35 oveq2 7411 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑣))
3635eqeq1d 2737 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3736rexbidv 3164 . . . . . . . 8 (𝑥 = 𝑣 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
3837imbi2d 340 . . . . . . 7 (𝑥 = 𝑣 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))))
39 wrd0 14555 . . . . . . . . 9 ∅ ∈ Word 𝐶
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin → ∅ ∈ Word 𝐶)
41 simpr 484 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → 𝑤 = ∅)
4241oveq2d 7419 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
4342eqeq2d 2746 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → ((𝑆 Σg ∅) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) = (𝑆 Σg ∅)))
44 eqidd 2736 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆 Σg ∅) = (𝑆 Σg ∅))
4540, 43, 44rspcedvd 3603 . . . . . . 7 (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) = (𝑆 Σg 𝑤))
46 ccatcl 14590 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐶𝑐 ∈ Word 𝐶) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
4746ad5ant24 760 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑣 ++ 𝑐) ∈ Word 𝐶)
48 oveq2 7411 . . . . . . . . . . . . . . 15 (𝑤 = (𝑣 ++ 𝑐) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑣 ++ 𝑐)))
4948eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑤 = (𝑣 ++ 𝑐) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
5049adantl 481 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) ∧ 𝑤 = (𝑣 ++ 𝑐)) → ((𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐))))
51 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
52 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin)
5352ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝐷 ∈ Fin)
5411symggrp 19379 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
55 grpmnd 18921 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 19448 . . . . . . . . . . . . . . . . . . 19 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆))
59 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6059ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ ran (pmTrsp‘𝐷))
6158, 60sseldd 3959 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ (Base‘𝑆))
62 simp-6r 787 . . . . . . . . . . . . . . . . . 18 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ ran (pmTrsp‘𝐷))
6358, 62sseldd 3959 . . . . . . . . . . . . . . . . 17 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ (Base‘𝑆))
64 eqid 2735 . . . . . . . . . . . . . . . . . 18 (+g𝑆) = (+g𝑆)
6512, 64gsumws2 18818 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Base‘𝑆) ∧ 𝑗 ∈ (Base‘𝑆)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
6656, 61, 63, 65syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑖(+g𝑆)𝑗))
67 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
6866, 67eqtrd 2770 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg ⟨“𝑖𝑗”⟩) = (𝑆 Σg 𝑐))
6951, 68oveq12d 7421 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
70 sswrd 14538 . . . . . . . . . . . . . . . . 17 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
72 simp-7l 788 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word ran (pmTrsp‘𝐷))
7371, 72sseldd 3959 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word (Base‘𝑆))
7461, 63s2cld 14888 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆))
7512, 64gsumccat 18817 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑢 ∈ Word (Base‘𝑆) ∧ ⟨“𝑖𝑗”⟩ ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
7656, 73, 74, 75syl3anc 1373 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = ((𝑆 Σg 𝑢)(+g𝑆)(𝑆 Σg ⟨“𝑖𝑗”⟩)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑀 “ (♯ “ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCyc‘𝐷)
7978imaeq1i 6044 . . . . . . . . . . . . . . . . . . . 20 (𝑀 “ (♯ “ {3})) = ((toCyc‘𝐷) “ (♯ “ {3}))
8077, 79eqtri 2758 . . . . . . . . . . . . . . . . . . 19 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
8180, 9cyc3evpm 33107 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin → 𝐶𝐴)
8211, 12evpmss 21544 . . . . . . . . . . . . . . . . . . 19 (pmEven‘𝐷) ⊆ (Base‘𝑆)
839, 82eqsstri 4005 . . . . . . . . . . . . . . . . . 18 𝐴 ⊆ (Base‘𝑆)
8481, 83sstrdi 3971 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin → 𝐶 ⊆ (Base‘𝑆))
85 sswrd 14538 . . . . . . . . . . . . . . . . 17 (𝐶 ⊆ (Base‘𝑆) → Word 𝐶 ⊆ Word (Base‘𝑆))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word 𝐶 ⊆ Word (Base‘𝑆))
87 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word 𝐶)
8886, 87sseldd 3959 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word (Base‘𝑆))
89 simplr 768 . . . . . . . . . . . . . . . 16 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word 𝐶)
9086, 89sseldd 3959 . . . . . . . . . . . . . . 15 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word (Base‘𝑆))
9112, 64gsumccat 18817 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Base‘𝑆) ∧ 𝑐 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9256, 88, 90, 91syl3anc 1373 . . . . . . . . . . . . . 14 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g𝑆)(𝑆 Σg 𝑐)))
9369, 76, 923eqtr4d 2780 . . . . . . . . . . . . 13 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3603 . . . . . . . . . . . 12 ((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (♯‘𝐷)
96 simp-6r 787 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝐷)
97 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑓𝐷)
98 simpllr 775 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔𝐷)
99 simplr 768 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷)
100 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
101100simprd 495 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))
102 simprr 772 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑗 = (𝑀‘⟨“𝑔”⟩))
10352ad6antr 736 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝐷 ∈ Fin)
104100simpld 494 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑒𝑓)
105 simprl 770 . . . . . . . . . . . . . . 15 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → 𝑔)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 33108 . . . . . . . . . . . . . 14 ((((((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) ∧ 𝑔𝐷) ∧ 𝐷) ∧ (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
107 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝐷 ∈ Fin)
108 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → 𝑗 ∈ ran (pmTrsp‘𝐷))
10916, 78trsp2cyc 33080 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
110107, 108, 109syl2anc 584 . . . . . . . . . . . . . 14 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑔𝐷𝐷 (𝑔𝑗 = (𝑀‘⟨“𝑔”⟩)))
111106, 110r19.29vva 3201 . . . . . . . . . . . . 13 (((((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒𝐷) ∧ 𝑓𝐷) ∧ (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11216, 78trsp2cyc 33080 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
11352, 59, 112syl2anc 584 . . . . . . . . . . . . 13 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑒𝐷𝑓𝐷 (𝑒𝑓𝑖 = (𝑀‘⟨“𝑒𝑓”⟩)))
114111, 113r19.29vva 3201 . . . . . . . . . . . 12 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑐 ∈ Word 𝐶(𝑖(+g𝑆)𝑗) = (𝑆 Σg 𝑐))
11594, 114r19.29a 3148 . . . . . . . . . . 11 ((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
116115adantl3r 750 . . . . . . . . . 10 (((((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
117 simpr 484 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → 𝐷 ∈ Fin)
118 simplr 768 . . . . . . . . . . . 12 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
120 oveq2 7411 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
121120eqeq2d 2746 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))
122121cbvrexvw 3221 . . . . . . . . . . 11 (∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))
123119, 122sylibr 234 . . . . . . . . . 10 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣))
124116, 123r19.29a 3148 . . . . . . . . 9 (((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))
125124ex 412 . . . . . . . 8 ((((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) ∧ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤)))
126125ex3 1347 . . . . . . 7 ((𝑢 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑖 ∈ ran (pmTrsp‘𝐷) ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ ⟨“𝑖𝑗”⟩)) = (𝑆 Σg 𝑤))))
12726, 30, 34, 38, 45, 126wrdt2ind 32875 . . . . . 6 ((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
128127imp 406 . . . . 5 (((𝑣 ∈ Word ran (pmTrsp‘𝐷) ∧ 2 ∥ (♯‘𝑣)) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1291, 22, 7, 128syl21anc 837 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))
1305eqeq1d 2737 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (𝑄 = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
131130rexbidv 3164 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))
132129, 131mpbird 257 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
13383sseli 3954 . . . 4 (𝑄𝐴𝑄 ∈ (Base‘𝑆))
13411, 12, 16psgnfitr 19496 . . . . 5 (𝐷 ∈ Fin → (𝑄 ∈ (Base‘𝑆) ↔ ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)))
135134biimpa 476 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Base‘𝑆)) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
136133, 135sylan2 593 . . 3 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))
137132, 136r19.29a 3148 . 2 ((𝐷 ∈ Fin ∧ 𝑄𝐴) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))
138 simpr 484 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 = (𝑆 Σg 𝑤))
13911altgnsg 33106 . . . . . . . . 9 (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆))
1409, 139eqeltrid 2838 . . . . . . . 8 (𝐷 ∈ Fin → 𝐴 ∈ (NrmSGrp‘𝑆))
141 nsgsubg 19139 . . . . . . . 8 (𝐴 ∈ (NrmSGrp‘𝑆) → 𝐴 ∈ (SubGrp‘𝑆))
142 subgsubm 19129 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝑆) → 𝐴 ∈ (SubMnd‘𝑆))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin → 𝐴 ∈ (SubMnd‘𝑆))
144143adantr 480 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝐴 ∈ (SubMnd‘𝑆))
145 sswrd 14538 . . . . . . . 8 (𝐶𝐴 → Word 𝐶 ⊆ Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴)
147146sselda 3958 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝑤 ∈ Word 𝐴)
148 gsumwsubmcl 18813 . . . . . 6 ((𝐴 ∈ (SubMnd‘𝑆) ∧ 𝑤 ∈ Word 𝐴) → (𝑆 Σg 𝑤) ∈ 𝐴)
149144, 147, 148syl2anc 584 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → (𝑆 Σg 𝑤) ∈ 𝐴)
150149adantr 480 . . . 4 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → (𝑆 Σg 𝑤) ∈ 𝐴)
151138, 150eqeltrd 2834 . . 3 (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
152151r19.29an 3144 . 2 ((𝐷 ∈ Fin ∧ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) → 𝑄𝐴)
153137, 152impbida 800 1 (𝐷 ∈ Fin → (𝑄𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  ccnv 5653  ran crn 5655  cima 5657  cfv 6530  (class class class)co 7403  Fincfn 8957  1c1 11128  -cneg 11465  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cexp 14077  chash 14346  Word cword 14529   ++ cconcat 14586  ⟨“cs2 14858  cdvds 16270  Basecbs 17226  +gcplusg 17269   Σg cgsu 17452  Mndcmnd 18710  SubMndcsubmnd 18758  Grpcgrp 18914  SubGrpcsubg 19101  NrmSGrpcnsg 19102  SymGrpcsymg 19348  pmTrspcpmtr 19420  pmSgncpsgn 19468  pmEvencevpm 19469  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-card 9951  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-word 14530  df-lsw 14579  df-concat 14587  df-s1 14612  df-substr 14657  df-pfx 14687  df-splice 14766  df-reverse 14775  df-csh 14805  df-s2 14865  df-s3 14866  df-dvds 16271  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-efmnd 18845  df-grp 18917  df-minusg 18918  df-sbg 18919  df-subg 19104  df-nsg 19105  df-ghm 19194  df-gim 19240  df-oppg 19327  df-symg 19349  df-pmtr 19421  df-psgn 19470  df-evpm 19471  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-drng 20689  df-cnfld 21314  df-tocyc 33064
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator