| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 768 | . . . . 5
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑣 ∈ Word ran (pmTrsp‘𝐷)) | 
| 2 |  | lencl 14572 | . . . . . . . 8
⊢ (𝑣 ∈ Word ran
(pmTrsp‘𝐷) →
(♯‘𝑣) ∈
ℕ0) | 
| 3 | 2 | ad2antlr 727 | . . . . . . 7
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈
ℕ0) | 
| 4 | 3 | nn0zd 12641 | . . . . . 6
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (♯‘𝑣) ∈
ℤ) | 
| 5 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 = (𝑆 Σg 𝑣)) | 
| 6 | 5 | fveq2d 6909 | . . . . . . 7
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣))) | 
| 7 |  | simplll 774 | . . . . . . . 8
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin) | 
| 8 |  | simpllr 775 | . . . . . . . . 9
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ 𝐴) | 
| 9 |  | cyc3genpm.a | . . . . . . . . 9
⊢ 𝐴 = (pmEven‘𝐷) | 
| 10 | 8, 9 | eleqtrdi 2850 | . . . . . . . 8
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 𝑄 ∈ (pmEven‘𝐷)) | 
| 11 |  | cyc3genpm.s | . . . . . . . . 9
⊢ 𝑆 = (SymGrp‘𝐷) | 
| 12 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 13 |  | eqid 2736 | . . . . . . . . 9
⊢
(pmSgn‘𝐷) =
(pmSgn‘𝐷) | 
| 14 | 11, 12, 13 | psgnevpm 21608 | . . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑄) = 1) | 
| 15 | 7, 10, 14 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘𝑄) = 1) | 
| 16 |  | eqid 2736 | . . . . . . . . 9
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) | 
| 17 | 11, 16, 13 | psgnvalii 19528 | . . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran
(pmTrsp‘𝐷)) →
((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) =
(-1↑(♯‘𝑣))) | 
| 18 | 7, 1, 17 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ((pmSgn‘𝐷)‘(𝑆 Σg 𝑣)) =
(-1↑(♯‘𝑣))) | 
| 19 | 6, 15, 18 | 3eqtr3rd 2785 | . . . . . 6
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) →
(-1↑(♯‘𝑣))
= 1) | 
| 20 |  | m1exp1 16414 | . . . . . . 7
⊢
((♯‘𝑣)
∈ ℤ → ((-1↑(♯‘𝑣)) = 1 ↔ 2 ∥ (♯‘𝑣))) | 
| 21 | 20 | biimpa 476 | . . . . . 6
⊢
(((♯‘𝑣)
∈ ℤ ∧ (-1↑(♯‘𝑣)) = 1) → 2 ∥ (♯‘𝑣)) | 
| 22 | 4, 19, 21 | syl2anc 584 | . . . . 5
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → 2 ∥
(♯‘𝑣)) | 
| 23 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑆 Σg
𝑥) = (𝑆 Σg
∅)) | 
| 24 | 23 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑥 = ∅ → ((𝑆 Σg
𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg ∅) =
(𝑆
Σg 𝑤))) | 
| 25 | 24 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = ∅ → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) =
(𝑆
Σg 𝑤))) | 
| 26 | 25 | imbi2d 340 | . . . . . . 7
⊢ (𝑥 = ∅ → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) =
(𝑆
Σg 𝑤)))) | 
| 27 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑢)) | 
| 28 | 27 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑥 = 𝑢 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) | 
| 29 | 28 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = 𝑢 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) | 
| 30 | 29 | imbi2d 340 | . . . . . . 7
⊢ (𝑥 = 𝑢 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)))) | 
| 31 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑥 = (𝑢 ++ 〈“𝑖𝑗”〉) → (𝑆 Σg 𝑥) = (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉))) | 
| 32 | 31 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑥 = (𝑢 ++ 〈“𝑖𝑗”〉) → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤))) | 
| 33 | 32 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = (𝑢 ++ 〈“𝑖𝑗”〉) → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤))) | 
| 34 | 33 | imbi2d 340 | . . . . . . 7
⊢ (𝑥 = (𝑢 ++ 〈“𝑖𝑗”〉) → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)))) | 
| 35 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝑆 Σg 𝑥) = (𝑆 Σg 𝑣)) | 
| 36 | 35 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑥 = 𝑣 → ((𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))) | 
| 37 | 36 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = 𝑣 → (∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))) | 
| 38 | 37 | imbi2d 340 | . . . . . . 7
⊢ (𝑥 = 𝑣 → ((𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑥) = (𝑆 Σg 𝑤)) ↔ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)))) | 
| 39 |  | wrd0 14578 | . . . . . . . . 9
⊢ ∅
∈ Word 𝐶 | 
| 40 | 39 | a1i 11 | . . . . . . . 8
⊢ (𝐷 ∈ Fin → ∅
∈ Word 𝐶) | 
| 41 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → 𝑤 = ∅) | 
| 42 | 41 | oveq2d 7448 | . . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → (𝑆 Σg
𝑤) = (𝑆 Σg
∅)) | 
| 43 | 42 | eqeq2d 2747 | . . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑤 = ∅) → ((𝑆 Σg
∅) = (𝑆
Σg 𝑤) ↔ (𝑆 Σg ∅) =
(𝑆
Σg ∅))) | 
| 44 |  | eqidd 2737 | . . . . . . . 8
⊢ (𝐷 ∈ Fin → (𝑆 Σg
∅) = (𝑆
Σg ∅)) | 
| 45 | 40, 43, 44 | rspcedvd 3623 | . . . . . . 7
⊢ (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg ∅) =
(𝑆
Σg 𝑤)) | 
| 46 |  | ccatcl 14613 | . . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Word 𝐶 ∧ 𝑐 ∈ Word 𝐶) → (𝑣 ++ 𝑐) ∈ Word 𝐶) | 
| 47 | 46 | ad5ant24 760 | . . . . . . . . . . . . 13
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑣 ++ 𝑐) ∈ Word 𝐶) | 
| 48 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑣 ++ 𝑐) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑣 ++ 𝑐))) | 
| 49 | 48 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑣 ++ 𝑐) → ((𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg (𝑣 ++ 𝑐)))) | 
| 50 | 49 | adantl 481 | . . . . . . . . . . . . 13
⊢
(((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) ∧ 𝑤 = (𝑣 ++ 𝑐)) → ((𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤) ↔ (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg (𝑣 ++ 𝑐)))) | 
| 51 |  | simpllr 775 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) | 
| 52 |  | simpllr 775 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝐷 ∈ Fin) | 
| 53 | 52 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝐷 ∈ Fin) | 
| 54 | 11 | symggrp 19419 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ Fin → 𝑆 ∈ Grp) | 
| 55 |  | grpmnd 18959 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | 
| 56 | 53, 54, 55 | 3syl 18 | . . . . . . . . . . . . . . . . 17
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑆 ∈ Mnd) | 
| 57 | 16, 11, 12 | symgtrf 19488 | . . . . . . . . . . . . . . . . . . 19
⊢ ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) | 
| 58 | 57 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆)) | 
| 59 |  | simp-5r 785 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → 𝑖 ∈ ran (pmTrsp‘𝐷)) | 
| 60 | 59 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ ran (pmTrsp‘𝐷)) | 
| 61 | 58, 60 | sseldd 3983 | . . . . . . . . . . . . . . . . 17
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑖 ∈ (Base‘𝑆)) | 
| 62 |  | simp-6r 787 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ ran (pmTrsp‘𝐷)) | 
| 63 | 58, 62 | sseldd 3983 | . . . . . . . . . . . . . . . . 17
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑗 ∈ (Base‘𝑆)) | 
| 64 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 65 | 12, 64 | gsumws2 18856 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Base‘𝑆) ∧ 𝑗 ∈ (Base‘𝑆)) → (𝑆 Σg
〈“𝑖𝑗”〉) = (𝑖(+g‘𝑆)𝑗)) | 
| 66 | 56, 61, 63, 65 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg
〈“𝑖𝑗”〉) = (𝑖(+g‘𝑆)𝑗)) | 
| 67 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) | 
| 68 | 66, 67 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg
〈“𝑖𝑗”〉) = (𝑆 Σg
𝑐)) | 
| 69 | 51, 68 | oveq12d 7450 | . . . . . . . . . . . . . 14
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → ((𝑆 Σg 𝑢)(+g‘𝑆)(𝑆 Σg
〈“𝑖𝑗”〉)) = ((𝑆 Σg
𝑣)(+g‘𝑆)(𝑆 Σg 𝑐))) | 
| 70 |  | sswrd 14561 | . . . . . . . . . . . . . . . . 17
⊢ (ran
(pmTrsp‘𝐷) ⊆
(Base‘𝑆) → Word
ran (pmTrsp‘𝐷)
⊆ Word (Base‘𝑆)) | 
| 71 | 58, 70 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word ran
(pmTrsp‘𝐷) ⊆
Word (Base‘𝑆)) | 
| 72 |  | simp-7l 788 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word ran (pmTrsp‘𝐷)) | 
| 73 | 71, 72 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑢 ∈ Word (Base‘𝑆)) | 
| 74 | 61, 63 | s2cld 14911 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 〈“𝑖𝑗”〉 ∈ Word (Base‘𝑆)) | 
| 75 | 12, 64 | gsumccat 18855 | . . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Mnd ∧ 𝑢 ∈ Word (Base‘𝑆) ∧ 〈“𝑖𝑗”〉 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = ((𝑆 Σg 𝑢)(+g‘𝑆)(𝑆 Σg
〈“𝑖𝑗”〉))) | 
| 76 | 56, 73, 74, 75 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = ((𝑆 Σg 𝑢)(+g‘𝑆)(𝑆 Σg
〈“𝑖𝑗”〉))) | 
| 77 |  | cyc3genpm.t | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) | 
| 78 |  | cyc3genpm.m | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 = (toCyc‘𝐷) | 
| 79 | 78 | imaeq1i 6074 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 “ (◡♯ “ {3})) = ((toCyc‘𝐷) “ (◡♯ “ {3})) | 
| 80 | 77, 79 | eqtri 2764 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝐶 = ((toCyc‘𝐷) “ (◡♯ “ {3})) | 
| 81 | 80, 9 | cyc3evpm 33171 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ Fin → 𝐶 ⊆ 𝐴) | 
| 82 | 11, 12 | evpmss 21605 | . . . . . . . . . . . . . . . . . . 19
⊢
(pmEven‘𝐷)
⊆ (Base‘𝑆) | 
| 83 | 9, 82 | eqsstri 4029 | . . . . . . . . . . . . . . . . . 18
⊢ 𝐴 ⊆ (Base‘𝑆) | 
| 84 | 81, 83 | sstrdi 3995 | . . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ Fin → 𝐶 ⊆ (Base‘𝑆)) | 
| 85 |  | sswrd 14561 | . . . . . . . . . . . . . . . . 17
⊢ (𝐶 ⊆ (Base‘𝑆) → Word 𝐶 ⊆ Word (Base‘𝑆)) | 
| 86 | 53, 84, 85 | 3syl 18 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → Word 𝐶 ⊆ Word (Base‘𝑆)) | 
| 87 |  | simp-4r 783 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word 𝐶) | 
| 88 | 86, 87 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑣 ∈ Word (Base‘𝑆)) | 
| 89 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word 𝐶) | 
| 90 | 86, 89 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → 𝑐 ∈ Word (Base‘𝑆)) | 
| 91 | 12, 64 | gsumccat 18855 | . . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Base‘𝑆) ∧ 𝑐 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g‘𝑆)(𝑆 Σg 𝑐))) | 
| 92 | 56, 88, 90, 91 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑣 ++ 𝑐)) = ((𝑆 Σg 𝑣)(+g‘𝑆)(𝑆 Σg 𝑐))) | 
| 93 | 69, 76, 92 | 3eqtr4d 2786 | . . . . . . . . . . . . 13
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → (𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg (𝑣 ++ 𝑐))) | 
| 94 | 47, 50, 93 | rspcedvd 3623 | . . . . . . . . . . . 12
⊢
((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑐 ∈ Word 𝐶) ∧ (𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)) | 
| 95 |  | cyc3genpm.n | . . . . . . . . . . . . . . 15
⊢ 𝑁 = (♯‘𝐷) | 
| 96 |  | simp-6r 787 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑒 ∈ 𝐷) | 
| 97 |  | simp-5r 785 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑓 ∈ 𝐷) | 
| 98 |  | simpllr 775 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑔 ∈ 𝐷) | 
| 99 |  | simplr 768 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → ℎ ∈ 𝐷) | 
| 100 |  | simp-4r 783 | . . . . . . . . . . . . . . . 16
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) | 
| 101 | 100 | simprd 495 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑖 = (𝑀‘〈“𝑒𝑓”〉)) | 
| 102 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑗 = (𝑀‘〈“𝑔ℎ”〉)) | 
| 103 | 52 | ad6antr 736 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝐷 ∈ Fin) | 
| 104 | 100 | simpld 494 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑒 ≠ 𝑓) | 
| 105 |  | simprl 770 | . . . . . . . . . . . . . . 15
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → 𝑔 ≠ ℎ) | 
| 106 | 77, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105 | cyc3genpmlem 33172 | . . . . . . . . . . . . . 14
⊢
((((((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) ∧ 𝑔 ∈ 𝐷) ∧ ℎ ∈ 𝐷) ∧ (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) | 
| 107 |  | simp-6r 787 | . . . . . . . . . . . . . . 15
⊢
(((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) → 𝐷 ∈ Fin) | 
| 108 |  | simp-7r 789 | . . . . . . . . . . . . . . 15
⊢
(((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) → 𝑗 ∈ ran (pmTrsp‘𝐷)) | 
| 109 | 16, 78 | trsp2cyc 33144 | . . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrsp‘𝐷)) → ∃𝑔 ∈ 𝐷 ∃ℎ ∈ 𝐷 (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) | 
| 110 | 107, 108,
109 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢
(((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) → ∃𝑔 ∈ 𝐷 ∃ℎ ∈ 𝐷 (𝑔 ≠ ℎ ∧ 𝑗 = (𝑀‘〈“𝑔ℎ”〉))) | 
| 111 | 106, 110 | r19.29vva 3215 | . . . . . . . . . . . . 13
⊢
(((((((((𝑢 ∈
Word ran (pmTrsp‘𝐷)
∧ 𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) → ∃𝑐 ∈ Word 𝐶(𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) | 
| 112 | 16, 78 | trsp2cyc 33144 | . . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrsp‘𝐷)) → ∃𝑒 ∈ 𝐷 ∃𝑓 ∈ 𝐷 (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) | 
| 113 | 52, 59, 112 | syl2anc 584 | . . . . . . . . . . . . 13
⊢
((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑒 ∈ 𝐷 ∃𝑓 ∈ 𝐷 (𝑒 ≠ 𝑓 ∧ 𝑖 = (𝑀‘〈“𝑒𝑓”〉))) | 
| 114 | 111, 113 | r19.29vva 3215 | . . . . . . . . . . . 12
⊢
((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑐 ∈ Word 𝐶(𝑖(+g‘𝑆)𝑗) = (𝑆 Σg 𝑐)) | 
| 115 | 94, 114 | r19.29a 3161 | . . . . . . . . . . 11
⊢
((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)) | 
| 116 | 115 | adantl3r 750 | . . . . . . . . . 10
⊢
(((((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐶) ∧ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)) | 
| 117 |  | simpr 484 | . . . . . . . . . . . 12
⊢
(((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → 𝐷 ∈ Fin) | 
| 118 |  | simplr 768 | . . . . . . . . . . . 12
⊢
(((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) | 
| 119 | 117, 118 | mpd 15 | . . . . . . . . . . 11
⊢
(((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) | 
| 120 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑣 = 𝑤 → (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)) | 
| 121 | 120 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → ((𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ (𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) | 
| 122 | 121 | cbvrexvw 3237 | . . . . . . . . . . 11
⊢
(∃𝑣 ∈
Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) | 
| 123 | 119, 122 | sylibr 234 | . . . . . . . . . 10
⊢
(((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑣 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑣)) | 
| 124 | 116, 123 | r19.29a 3161 | . . . . . . . . 9
⊢
(((((𝑢 ∈ Word
ran (pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) ∧ 𝐷 ∈ Fin) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)) | 
| 125 | 124 | ex 412 | . . . . . . . 8
⊢ ((((𝑢 ∈ Word ran
(pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷)) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) ∧
(𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤))) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤))) | 
| 126 | 125 | ex3 1346 | . . . . . . 7
⊢ ((𝑢 ∈ Word ran
(pmTrsp‘𝐷) ∧
𝑖 ∈ ran
(pmTrsp‘𝐷) ∧
𝑗 ∈ ran
(pmTrsp‘𝐷)) →
((𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑢) = (𝑆 Σg 𝑤)) → (𝐷 ∈ Fin → ∃𝑤 ∈ Word 𝐶(𝑆 Σg (𝑢 ++ 〈“𝑖𝑗”〉)) = (𝑆 Σg 𝑤)))) | 
| 127 | 26, 30, 34, 38, 45, 126 | wrdt2ind 32939 | . . . . . 6
⊢ ((𝑣 ∈ Word ran
(pmTrsp‘𝐷) ∧ 2
∥ (♯‘𝑣))
→ (𝐷 ∈ Fin →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))) | 
| 128 | 127 | imp 406 | . . . . 5
⊢ (((𝑣 ∈ Word ran
(pmTrsp‘𝐷) ∧ 2
∥ (♯‘𝑣))
∧ 𝐷 ∈ Fin) →
∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)) | 
| 129 | 1, 22, 7, 128 | syl21anc 837 | . . . 4
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤)) | 
| 130 | 5 | eqeq1d 2738 | . . . . 5
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (𝑄 = (𝑆 Σg 𝑤) ↔ (𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))) | 
| 131 | 130 | rexbidv 3178 | . . . 4
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → (∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤) ↔ ∃𝑤 ∈ Word 𝐶(𝑆 Σg 𝑣) = (𝑆 Σg 𝑤))) | 
| 132 | 129, 131 | mpbird 257 | . . 3
⊢ ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrsp‘𝐷)) ∧ 𝑄 = (𝑆 Σg 𝑣)) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) | 
| 133 | 83 | sseli 3978 | . . . 4
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝑆)) | 
| 134 | 11, 12, 16 | psgnfitr 19536 | . . . . 5
⊢ (𝐷 ∈ Fin → (𝑄 ∈ (Base‘𝑆) ↔ ∃𝑣 ∈ Word ran
(pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣))) | 
| 135 | 134 | biimpa 476 | . . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Base‘𝑆)) → ∃𝑣 ∈ Word ran
(pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)) | 
| 136 | 133, 135 | sylan2 593 | . . 3
⊢ ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) → ∃𝑣 ∈ Word ran (pmTrsp‘𝐷)𝑄 = (𝑆 Σg 𝑣)) | 
| 137 | 132, 136 | r19.29a 3161 | . 2
⊢ ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) → ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) | 
| 138 |  | simpr 484 | . . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 = (𝑆 Σg 𝑤)) | 
| 139 | 11 | altgnsg 33170 | . . . . . . . . 9
⊢ (𝐷 ∈ Fin →
(pmEven‘𝐷) ∈
(NrmSGrp‘𝑆)) | 
| 140 | 9, 139 | eqeltrid 2844 | . . . . . . . 8
⊢ (𝐷 ∈ Fin → 𝐴 ∈ (NrmSGrp‘𝑆)) | 
| 141 |  | nsgsubg 19177 | . . . . . . . 8
⊢ (𝐴 ∈ (NrmSGrp‘𝑆) → 𝐴 ∈ (SubGrp‘𝑆)) | 
| 142 |  | subgsubm 19167 | . . . . . . . 8
⊢ (𝐴 ∈ (SubGrp‘𝑆) → 𝐴 ∈ (SubMnd‘𝑆)) | 
| 143 | 140, 141,
142 | 3syl 18 | . . . . . . 7
⊢ (𝐷 ∈ Fin → 𝐴 ∈ (SubMnd‘𝑆)) | 
| 144 | 143 | adantr 480 | . . . . . 6
⊢ ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝐴 ∈ (SubMnd‘𝑆)) | 
| 145 |  | sswrd 14561 | . . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → Word 𝐶 ⊆ Word 𝐴) | 
| 146 | 81, 145 | syl 17 | . . . . . . 7
⊢ (𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴) | 
| 147 | 146 | sselda 3982 | . . . . . 6
⊢ ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → 𝑤 ∈ Word 𝐴) | 
| 148 |  | gsumwsubmcl 18851 | . . . . . 6
⊢ ((𝐴 ∈ (SubMnd‘𝑆) ∧ 𝑤 ∈ Word 𝐴) → (𝑆 Σg 𝑤) ∈ 𝐴) | 
| 149 | 144, 147,
148 | syl2anc 584 | . . . . 5
⊢ ((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) → (𝑆 Σg 𝑤) ∈ 𝐴) | 
| 150 | 149 | adantr 480 | . . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → (𝑆 Σg 𝑤) ∈ 𝐴) | 
| 151 | 138, 150 | eqeltrd 2840 | . . 3
⊢ (((𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶) ∧ 𝑄 = (𝑆 Σg 𝑤)) → 𝑄 ∈ 𝐴) | 
| 152 | 151 | r19.29an 3157 | . 2
⊢ ((𝐷 ∈ Fin ∧ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤)) → 𝑄 ∈ 𝐴) | 
| 153 | 137, 152 | impbida 800 | 1
⊢ (𝐷 ∈ Fin → (𝑄 ∈ 𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))) |