Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3genpm Structured version   Visualization version   GIF version

Theorem cyc3genpm 32581
Description: The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
Hypotheses
Ref Expression
cyc3genpm.t 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
cyc3genpm.a 𝐴 = (pmEvenβ€˜π·)
cyc3genpm.s 𝑆 = (SymGrpβ€˜π·)
cyc3genpm.n 𝑁 = (β™―β€˜π·)
cyc3genpm.m 𝑀 = (toCycβ€˜π·)
Assertion
Ref Expression
cyc3genpm (𝐷 ∈ Fin β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)))
Distinct variable groups:   𝑀,𝐴   𝑀,𝐢   𝑀,𝐷   𝑀,𝑁   𝑀,𝑄   𝑀,𝑆
Allowed substitution hint:   𝑀(𝑀)

Proof of Theorem cyc3genpm
Dummy variables 𝑖 𝑒 𝑣 𝑐 𝑒 𝑓 𝑔 β„Ž 𝑗 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑣 ∈ Word ran (pmTrspβ€˜π·))
2 lencl 14487 . . . . . . . 8 (𝑣 ∈ Word ran (pmTrspβ€˜π·) β†’ (β™―β€˜π‘£) ∈ β„•0)
32ad2antlr 723 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (β™―β€˜π‘£) ∈ β„•0)
43nn0zd 12588 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (β™―β€˜π‘£) ∈ β„€)
5 simpr 483 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 = (𝑆 Ξ£g 𝑣))
65fveq2d 6894 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)))
7 simplll 771 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝐷 ∈ Fin)
8 simpllr 772 . . . . . . . . 9 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 ∈ 𝐴)
9 cyc3genpm.a . . . . . . . . 9 𝐴 = (pmEvenβ€˜π·)
108, 9eleqtrdi 2841 . . . . . . . 8 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 𝑄 ∈ (pmEvenβ€˜π·))
11 cyc3genpm.s . . . . . . . . 9 𝑆 = (SymGrpβ€˜π·)
12 eqid 2730 . . . . . . . . 9 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
13 eqid 2730 . . . . . . . . 9 (pmSgnβ€˜π·) = (pmSgnβ€˜π·)
1411, 12, 13psgnevpm 21361 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (pmEvenβ€˜π·)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = 1)
157, 10, 14syl2anc 582 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜π‘„) = 1)
16 eqid 2730 . . . . . . . . 9 ran (pmTrspβ€˜π·) = ran (pmTrspβ€˜π·)
1711, 16, 13psgnvalii 19418 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) β†’ ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)) = (-1↑(β™―β€˜π‘£)))
187, 1, 17syl2anc 582 . . . . . . 7 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ ((pmSgnβ€˜π·)β€˜(𝑆 Ξ£g 𝑣)) = (-1↑(β™―β€˜π‘£)))
196, 15, 183eqtr3rd 2779 . . . . . 6 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (-1↑(β™―β€˜π‘£)) = 1)
20 m1exp1 16323 . . . . . . 7 ((β™―β€˜π‘£) ∈ β„€ β†’ ((-1↑(β™―β€˜π‘£)) = 1 ↔ 2 βˆ₯ (β™―β€˜π‘£)))
2120biimpa 475 . . . . . 6 (((β™―β€˜π‘£) ∈ β„€ ∧ (-1↑(β™―β€˜π‘£)) = 1) β†’ 2 βˆ₯ (β™―β€˜π‘£))
224, 19, 21syl2anc 582 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ 2 βˆ₯ (β™―β€˜π‘£))
23 oveq2 7419 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g βˆ…))
2423eqeq1d 2732 . . . . . . . . 9 (π‘₯ = βˆ… β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀)))
2524rexbidv 3176 . . . . . . . 8 (π‘₯ = βˆ… β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀)))
2625imbi2d 339 . . . . . . 7 (π‘₯ = βˆ… β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀))))
27 oveq2 7419 . . . . . . . . . 10 (π‘₯ = 𝑒 β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑒))
2827eqeq1d 2732 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
2928rexbidv 3176 . . . . . . . 8 (π‘₯ = 𝑒 β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
3029imbi2d 339 . . . . . . 7 (π‘₯ = 𝑒 β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))))
31 oveq2 7419 . . . . . . . . . 10 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)))
3231eqeq1d 2732 . . . . . . . . 9 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
3332rexbidv 3176 . . . . . . . 8 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
3433imbi2d 339 . . . . . . 7 (π‘₯ = (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©) β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))))
35 oveq2 7419 . . . . . . . . . 10 (π‘₯ = 𝑣 β†’ (𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑣))
3635eqeq1d 2732 . . . . . . . . 9 (π‘₯ = 𝑣 β†’ ((𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
3736rexbidv 3176 . . . . . . . 8 (π‘₯ = 𝑣 β†’ (βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
3837imbi2d 339 . . . . . . 7 (π‘₯ = 𝑣 β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g π‘₯) = (𝑆 Ξ£g 𝑀)) ↔ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))))
39 wrd0 14493 . . . . . . . . 9 βˆ… ∈ Word 𝐢
4039a1i 11 . . . . . . . 8 (𝐷 ∈ Fin β†’ βˆ… ∈ Word 𝐢)
41 simpr 483 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ 𝑀 = βˆ…)
4241oveq2d 7427 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ (𝑆 Ξ£g 𝑀) = (𝑆 Ξ£g βˆ…))
4342eqeq2d 2741 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑀 = βˆ…) β†’ ((𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g βˆ…)))
44 eqidd 2731 . . . . . . . 8 (𝐷 ∈ Fin β†’ (𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g βˆ…))
4540, 43, 44rspcedvd 3613 . . . . . . 7 (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g βˆ…) = (𝑆 Ξ£g 𝑀))
46 ccatcl 14528 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word 𝐢 ∧ 𝑐 ∈ Word 𝐢) β†’ (𝑣 ++ 𝑐) ∈ Word 𝐢)
4746ad5ant24 757 . . . . . . . . . . . . 13 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑣 ++ 𝑐) ∈ Word 𝐢)
48 oveq2 7419 . . . . . . . . . . . . . . 15 (𝑀 = (𝑣 ++ 𝑐) β†’ (𝑆 Ξ£g 𝑀) = (𝑆 Ξ£g (𝑣 ++ 𝑐)))
4948eqeq2d 2741 . . . . . . . . . . . . . 14 (𝑀 = (𝑣 ++ 𝑐) β†’ ((𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐))))
5049adantl 480 . . . . . . . . . . . . 13 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) ∧ 𝑀 = (𝑣 ++ 𝑐)) β†’ ((𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐))))
51 simpllr 772 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣))
52 simpllr 772 . . . . . . . . . . . . . . . . . . 19 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ 𝐷 ∈ Fin)
5352ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝐷 ∈ Fin)
5411symggrp 19309 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin β†’ 𝑆 ∈ Grp)
55 grpmnd 18862 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ Grp β†’ 𝑆 ∈ Mnd)
5653, 54, 553syl 18 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑆 ∈ Mnd)
5716, 11, 12symgtrf 19378 . . . . . . . . . . . . . . . . . . 19 ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†)
5857a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†))
59 simp-5r 782 . . . . . . . . . . . . . . . . . . 19 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ 𝑖 ∈ ran (pmTrspβ€˜π·))
6059ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑖 ∈ ran (pmTrspβ€˜π·))
6158, 60sseldd 3982 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑖 ∈ (Baseβ€˜π‘†))
62 simp-6r 784 . . . . . . . . . . . . . . . . . 18 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑗 ∈ ran (pmTrspβ€˜π·))
6358, 62sseldd 3982 . . . . . . . . . . . . . . . . 17 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑗 ∈ (Baseβ€˜π‘†))
64 eqid 2730 . . . . . . . . . . . . . . . . . 18 (+gβ€˜π‘†) = (+gβ€˜π‘†)
6512, 64gsumws2 18759 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Mnd ∧ 𝑖 ∈ (Baseβ€˜π‘†) ∧ 𝑗 ∈ (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑖(+gβ€˜π‘†)𝑗))
6656, 61, 63, 65syl3anc 1369 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑖(+gβ€˜π‘†)𝑗))
67 simpr 483 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
6866, 67eqtrd 2770 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©) = (𝑆 Ξ£g 𝑐))
6951, 68oveq12d 7429 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
70 sswrd 14476 . . . . . . . . . . . . . . . . 17 (ran (pmTrspβ€˜π·) βŠ† (Baseβ€˜π‘†) β†’ Word ran (pmTrspβ€˜π·) βŠ† Word (Baseβ€˜π‘†))
7158, 70syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ Word ran (pmTrspβ€˜π·) βŠ† Word (Baseβ€˜π‘†))
72 simp-7l 785 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑒 ∈ Word ran (pmTrspβ€˜π·))
7371, 72sseldd 3982 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑒 ∈ Word (Baseβ€˜π‘†))
7461, 63s2cld 14826 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ βŸ¨β€œπ‘–π‘—β€βŸ© ∈ Word (Baseβ€˜π‘†))
7512, 64gsumccat 18758 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑒 ∈ Word (Baseβ€˜π‘†) ∧ βŸ¨β€œπ‘–π‘—β€βŸ© ∈ Word (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)))
7656, 73, 74, 75syl3anc 1369 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = ((𝑆 Ξ£g 𝑒)(+gβ€˜π‘†)(𝑆 Ξ£g βŸ¨β€œπ‘–π‘—β€βŸ©)))
77 cyc3genpm.t . . . . . . . . . . . . . . . . . . . 20 𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))
78 cyc3genpm.m . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCycβ€˜π·)
7978imaeq1i 6055 . . . . . . . . . . . . . . . . . . . 20 (𝑀 β€œ (β—‘β™― β€œ {3})) = ((toCycβ€˜π·) β€œ (β—‘β™― β€œ {3}))
8077, 79eqtri 2758 . . . . . . . . . . . . . . . . . . 19 𝐢 = ((toCycβ€˜π·) β€œ (β—‘β™― β€œ {3}))
8180, 9cyc3evpm 32579 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ Fin β†’ 𝐢 βŠ† 𝐴)
8211, 12evpmss 21358 . . . . . . . . . . . . . . . . . . 19 (pmEvenβ€˜π·) βŠ† (Baseβ€˜π‘†)
839, 82eqsstri 4015 . . . . . . . . . . . . . . . . . 18 𝐴 βŠ† (Baseβ€˜π‘†)
8481, 83sstrdi 3993 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ Fin β†’ 𝐢 βŠ† (Baseβ€˜π‘†))
85 sswrd 14476 . . . . . . . . . . . . . . . . 17 (𝐢 βŠ† (Baseβ€˜π‘†) β†’ Word 𝐢 βŠ† Word (Baseβ€˜π‘†))
8653, 84, 853syl 18 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ Word 𝐢 βŠ† Word (Baseβ€˜π‘†))
87 simp-4r 780 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑣 ∈ Word 𝐢)
8886, 87sseldd 3982 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑣 ∈ Word (Baseβ€˜π‘†))
89 simplr 765 . . . . . . . . . . . . . . . 16 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑐 ∈ Word 𝐢)
9086, 89sseldd 3982 . . . . . . . . . . . . . . 15 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ 𝑐 ∈ Word (Baseβ€˜π‘†))
9112, 64gsumccat 18758 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Mnd ∧ 𝑣 ∈ Word (Baseβ€˜π‘†) ∧ 𝑐 ∈ Word (Baseβ€˜π‘†)) β†’ (𝑆 Ξ£g (𝑣 ++ 𝑐)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
9256, 88, 90, 91syl3anc 1369 . . . . . . . . . . . . . 14 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑣 ++ 𝑐)) = ((𝑆 Ξ£g 𝑣)(+gβ€˜π‘†)(𝑆 Ξ£g 𝑐)))
9369, 76, 923eqtr4d 2780 . . . . . . . . . . . . 13 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ (𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g (𝑣 ++ 𝑐)))
9447, 50, 93rspcedvd 3613 . . . . . . . . . . . 12 ((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑐 ∈ Word 𝐢) ∧ (𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
95 cyc3genpm.n . . . . . . . . . . . . . . 15 𝑁 = (β™―β€˜π·)
96 simp-6r 784 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑒 ∈ 𝐷)
97 simp-5r 782 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑓 ∈ 𝐷)
98 simpllr 772 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑔 ∈ 𝐷)
99 simplr 765 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ β„Ž ∈ 𝐷)
100 simp-4r 780 . . . . . . . . . . . . . . . 16 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
101100simprd 494 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))
102 simprr 769 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))
10352ad6antr 732 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝐷 ∈ Fin)
104100simpld 493 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑒 β‰  𝑓)
105 simprl 767 . . . . . . . . . . . . . . 15 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ 𝑔 β‰  β„Ž)
10677, 9, 11, 95, 78, 64, 96, 97, 98, 99, 101, 102, 103, 104, 105cyc3genpmlem 32580 . . . . . . . . . . . . . 14 ((((((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) ∧ 𝑔 ∈ 𝐷) ∧ β„Ž ∈ 𝐷) ∧ (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©))) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
107 simp-6r 784 . . . . . . . . . . . . . . 15 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ 𝐷 ∈ Fin)
108 simp-7r 786 . . . . . . . . . . . . . . 15 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ 𝑗 ∈ ran (pmTrspβ€˜π·))
10916, 78trsp2cyc 32552 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) β†’ βˆƒπ‘” ∈ 𝐷 βˆƒβ„Ž ∈ 𝐷 (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©)))
110107, 108, 109syl2anc 582 . . . . . . . . . . . . . 14 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ βˆƒπ‘” ∈ 𝐷 βˆƒβ„Ž ∈ 𝐷 (𝑔 β‰  β„Ž ∧ 𝑗 = (π‘€β€˜βŸ¨β€œπ‘”β„Žβ€βŸ©)))
111106, 110r19.29vva 3211 . . . . . . . . . . . . 13 (((((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) ∧ 𝑒 ∈ 𝐷) ∧ 𝑓 ∈ 𝐷) ∧ (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©))) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
11216, 78trsp2cyc 32552 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) β†’ βˆƒπ‘’ ∈ 𝐷 βˆƒπ‘“ ∈ 𝐷 (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
11352, 59, 112syl2anc 582 . . . . . . . . . . . . 13 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘’ ∈ 𝐷 βˆƒπ‘“ ∈ 𝐷 (𝑒 β‰  𝑓 ∧ 𝑖 = (π‘€β€˜βŸ¨β€œπ‘’π‘“β€βŸ©)))
114111, 113r19.29vva 3211 . . . . . . . . . . . 12 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘ ∈ Word 𝐢(𝑖(+gβ€˜π‘†)𝑗) = (𝑆 Ξ£g 𝑐))
11594, 114r19.29a 3160 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
116115adantl3r 746 . . . . . . . . . 10 (((((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) ∧ 𝑣 ∈ Word 𝐢) ∧ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
117 simpr 483 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ 𝐷 ∈ Fin)
118 simplr 765 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
119117, 118mpd 15 . . . . . . . . . . 11 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))
120 oveq2 7419 . . . . . . . . . . . . 13 (𝑣 = 𝑀 β†’ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
121120eqeq2d 2741 . . . . . . . . . . . 12 (𝑣 = 𝑀 β†’ ((𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣) ↔ (𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)))
122121cbvrexvw 3233 . . . . . . . . . . 11 (βˆƒπ‘£ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))
123119, 122sylibr 233 . . . . . . . . . 10 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘£ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑣))
124116, 123r19.29a 3160 . . . . . . . . 9 (((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))
125124ex 411 . . . . . . . 8 ((((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·)) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) ∧ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀))) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀)))
126125ex3 1344 . . . . . . 7 ((𝑒 ∈ Word ran (pmTrspβ€˜π·) ∧ 𝑖 ∈ ran (pmTrspβ€˜π·) ∧ 𝑗 ∈ ran (pmTrspβ€˜π·)) β†’ ((𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑒) = (𝑆 Ξ£g 𝑀)) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g (𝑒 ++ βŸ¨β€œπ‘–π‘—β€βŸ©)) = (𝑆 Ξ£g 𝑀))))
12726, 30, 34, 38, 45, 126wrdt2ind 32384 . . . . . 6 ((𝑣 ∈ Word ran (pmTrspβ€˜π·) ∧ 2 βˆ₯ (β™―β€˜π‘£)) β†’ (𝐷 ∈ Fin β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
128127imp 405 . . . . 5 (((𝑣 ∈ Word ran (pmTrspβ€˜π·) ∧ 2 βˆ₯ (β™―β€˜π‘£)) ∧ 𝐷 ∈ Fin) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
1291, 22, 7, 128syl21anc 834 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀))
1305eqeq1d 2732 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (𝑄 = (𝑆 Ξ£g 𝑀) ↔ (𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
131130rexbidv 3176 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ (βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀) ↔ βˆƒπ‘€ ∈ Word 𝐢(𝑆 Ξ£g 𝑣) = (𝑆 Ξ£g 𝑀)))
132129, 131mpbird 256 . . 3 ((((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) ∧ 𝑣 ∈ Word ran (pmTrspβ€˜π·)) ∧ 𝑄 = (𝑆 Ξ£g 𝑣)) β†’ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀))
13383sseli 3977 . . . 4 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜π‘†))
13411, 12, 16psgnfitr 19426 . . . . 5 (𝐷 ∈ Fin β†’ (𝑄 ∈ (Baseβ€˜π‘†) ↔ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣)))
135134biimpa 475 . . . 4 ((𝐷 ∈ Fin ∧ 𝑄 ∈ (Baseβ€˜π‘†)) β†’ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣))
136133, 135sylan2 591 . . 3 ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) β†’ βˆƒπ‘£ ∈ Word ran (pmTrspβ€˜π·)𝑄 = (𝑆 Ξ£g 𝑣))
137132, 136r19.29a 3160 . 2 ((𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴) β†’ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀))
138 simpr 483 . . . 4 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 = (𝑆 Ξ£g 𝑀))
13911altgnsg 32578 . . . . . . . . 9 (𝐷 ∈ Fin β†’ (pmEvenβ€˜π·) ∈ (NrmSGrpβ€˜π‘†))
1409, 139eqeltrid 2835 . . . . . . . 8 (𝐷 ∈ Fin β†’ 𝐴 ∈ (NrmSGrpβ€˜π‘†))
141 nsgsubg 19074 . . . . . . . 8 (𝐴 ∈ (NrmSGrpβ€˜π‘†) β†’ 𝐴 ∈ (SubGrpβ€˜π‘†))
142 subgsubm 19064 . . . . . . . 8 (𝐴 ∈ (SubGrpβ€˜π‘†) β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
143140, 141, 1423syl 18 . . . . . . 7 (𝐷 ∈ Fin β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
144143adantr 479 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ 𝐴 ∈ (SubMndβ€˜π‘†))
145 sswrd 14476 . . . . . . . 8 (𝐢 βŠ† 𝐴 β†’ Word 𝐢 βŠ† Word 𝐴)
14681, 145syl 17 . . . . . . 7 (𝐷 ∈ Fin β†’ Word 𝐢 βŠ† Word 𝐴)
147146sselda 3981 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ 𝑀 ∈ Word 𝐴)
148 gsumwsubmcl 18754 . . . . . 6 ((𝐴 ∈ (SubMndβ€˜π‘†) ∧ 𝑀 ∈ Word 𝐴) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
149144, 147, 148syl2anc 582 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
150149adantr 479 . . . 4 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ (𝑆 Ξ£g 𝑀) ∈ 𝐴)
151138, 150eqeltrd 2831 . . 3 (((𝐷 ∈ Fin ∧ 𝑀 ∈ Word 𝐢) ∧ 𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 ∈ 𝐴)
152151r19.29an 3156 . 2 ((𝐷 ∈ Fin ∧ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)) β†’ 𝑄 ∈ 𝐴)
153137, 152impbida 797 1 (𝐷 ∈ Fin β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   class class class wbr 5147  β—‘ccnv 5674  ran crn 5676   β€œ cima 5678  β€˜cfv 6542  (class class class)co 7411  Fincfn 8941  1c1 11113  -cneg 11449  2c2 12271  3c3 12272  β„•0cn0 12476  β„€cz 12562  β†‘cexp 14031  β™―chash 14294  Word cword 14468   ++ cconcat 14524  βŸ¨β€œcs2 14796   βˆ₯ cdvds 16201  Basecbs 17148  +gcplusg 17201   Ξ£g cgsu 17390  Mndcmnd 18659  SubMndcsubmnd 18704  Grpcgrp 18855  SubGrpcsubg 19036  NrmSGrpcnsg 19037  SymGrpcsymg 19275  pmTrspcpmtr 19350  pmSgncpsgn 19398  pmEvencevpm 19399  toCycctocyc 32535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-xor 1508  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-card 9936  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-splice 14704  df-reverse 14713  df-csh 14743  df-s2 14803  df-s3 14804  df-dvds 16202  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-efmnd 18786  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-nsg 19040  df-ghm 19128  df-gim 19173  df-oppg 19251  df-symg 19276  df-pmtr 19351  df-psgn 19400  df-evpm 19401  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-drng 20502  df-cnfld 21145  df-tocyc 32536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator