![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pthdepisspth | Structured version Visualization version GIF version |
Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 12-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
pthdepisspth | ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 29759 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
2 | simplll 774 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(Trails‘𝐺)𝑃) | |
3 | trliswlk 29733 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | wlkcl 29651 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝐹(Trails‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) |
6 | 5 | ad3antrrr 729 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0) |
7 | eqid 2740 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | 7 | wlkp 29652 | . . . . . . . . . 10 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
10 | 9 | ad3antrrr 729 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
11 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
12 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
13 | 10, 11, 12 | 3jca 1128 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
14 | simplr 768 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) | |
15 | injresinj 13838 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → Fun ◡𝑃))) | |
16 | 6, 13, 14, 15 | syl3c 66 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡𝑃) |
17 | 2, 16 | jca 511 | . . . . 5 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
18 | 17 | ex3 1346 | . . . 4 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
19 | 1, 18 | sylbi 217 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
20 | 19 | imp 406 | . 2 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
21 | isspth 29760 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
22 | 20, 21 | sylibr 234 | 1 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 {cpr 4650 class class class wbr 5166 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ℕ0cn0 12553 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Vtxcvtx 29031 Walkscwlks 29632 Trailsctrls 29726 Pathscpths 29748 SPathscspths 29749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-wlks 29635 df-trls 29728 df-pths 29752 df-spths 29753 |
This theorem is referenced by: pthisspthorcycl 35096 |
Copyright terms: Public domain | W3C validator |