Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pthdepisspth | Structured version Visualization version GIF version |
Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 12-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
pthdepisspth | ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 28070 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
2 | simplll 771 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(Trails‘𝐺)𝑃) | |
3 | trliswlk 28045 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | wlkcl 27963 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝐹(Trails‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) |
6 | 5 | ad3antrrr 726 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0) |
7 | eqid 2739 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | 7 | wlkp 27964 | . . . . . . . . . 10 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
10 | 9 | ad3antrrr 726 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
11 | simpllr 772 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
12 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
13 | 10, 11, 12 | 3jca 1126 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
14 | simplr 765 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) | |
15 | injresinj 13489 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → Fun ◡𝑃))) | |
16 | 6, 13, 14, 15 | syl3c 66 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡𝑃) |
17 | 2, 16 | jca 511 | . . . . 5 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
18 | 17 | ex3 1344 | . . . 4 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
19 | 1, 18 | sylbi 216 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
20 | 19 | imp 406 | . 2 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
21 | isspth 28071 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
22 | 20, 21 | sylibr 233 | 1 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∩ cin 3890 ∅c0 4261 {cpr 4568 class class class wbr 5078 ◡ccnv 5587 ↾ cres 5590 “ cima 5591 Fun wfun 6424 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 ℕ0cn0 12216 ...cfz 13221 ..^cfzo 13364 ♯chash 14025 Vtxcvtx 27347 Walkscwlks 27944 Trailsctrls 28038 Pathscpths 28059 SPathscspths 28060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-wlks 27947 df-trls 28040 df-pths 28063 df-spths 28064 |
This theorem is referenced by: pthisspthorcycl 33069 |
Copyright terms: Public domain | W3C validator |