![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pthdepisspth | Structured version Visualization version GIF version |
Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 12-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
pthdepisspth | ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispth 26977 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | |
2 | simplll 792 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(Trails‘𝐺)𝑃) | |
3 | trliswlk 26950 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | wlkcl 26865 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝐹(Trails‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) |
6 | 5 | ad3antrrr 722 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0) |
7 | eqid 2799 | . . . . . . . . . . 11 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | 7 | wlkp 26866 | . . . . . . . . . 10 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
9 | 3, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
10 | 9 | ad3antrrr 722 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
11 | simpllr 794 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) | |
12 | simpr 478 | . . . . . . . 8 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
13 | 10, 11, 12 | 3jca 1159 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
14 | simplr 786 | . . . . . . 7 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) | |
15 | injresinj 12844 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → Fun ◡𝑃))) | |
16 | 6, 13, 14, 15 | syl3c 66 | . . . . . 6 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun ◡𝑃) |
17 | 2, 16 | jca 508 | . . . . 5 ⊢ ((((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
18 | 17 | ex3 1456 | . . . 4 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
19 | 1, 18 | sylbi 209 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
20 | 19 | imp 396 | . 2 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
21 | isspth 26978 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
22 | 20, 21 | sylibr 226 | 1 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∩ cin 3768 ∅c0 4115 {cpr 4370 class class class wbr 4843 ◡ccnv 5311 ↾ cres 5314 “ cima 5315 Fun wfun 6095 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 ℕ0cn0 11580 ...cfz 12580 ..^cfzo 12720 ♯chash 13370 Vtxcvtx 26231 Walkscwlks 26846 Trailsctrls 26943 Pathscpths 26966 SPathscspths 26967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ifp 1087 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 df-wlks 26849 df-trls 26945 df-pths 26970 df-spths 26971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |