MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrevral Structured version   Visualization version   GIF version

Theorem fzrevral 13652
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
2 elfzelz 13564 . . . . . . . 8 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
3 fzrev 13627 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
43anassrs 467 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
52, 4sylan2 593 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
61, 5mpbid 232 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ (𝑀...𝑁))
7 rspsbc 3879 . . . . . 6 ((𝐾𝑘) ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
86, 7syl 17 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
98ex3 1347 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
109com23 86 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → [(𝐾𝑘) / 𝑗]𝜑)))
1110ralrimdv 3152 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
12 nfv 1914 . . . 4 𝑗 𝐾 ∈ ℤ
13 nfcv 2905 . . . . 5 𝑗((𝐾𝑁)...(𝐾𝑀))
14 nfsbc1v 3808 . . . . 5 𝑗[(𝐾𝑘) / 𝑗]𝜑
1513, 14nfralw 3311 . . . 4 𝑗𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑
16 fzrev2i 13629 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)))
17 oveq2 7439 . . . . . . . . . 10 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
1817sbceq1d 3793 . . . . . . . . 9 (𝑘 = (𝐾𝑗) → ([(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
1918rspcv 3618 . . . . . . . 8 ((𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2016, 19syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
21 zcn 12618 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 elfzelz 13564 . . . . . . . . . . 11 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
2322zcnd 12723 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℂ)
24 nncan 11538 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2521, 23, 24syl2an 596 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾 − (𝐾𝑗)) = 𝑗)
2625eqcomd 2743 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 = (𝐾 − (𝐾𝑗)))
27 sbceq1a 3799 . . . . . . . 8 (𝑗 = (𝐾 − (𝐾𝑗)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2826, 27syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2920, 28sylibrd 259 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑))
3029ex 412 . . . . 5 (𝐾 ∈ ℤ → (𝑗 ∈ (𝑀...𝑁) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑)))
3130com23 86 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → (𝑗 ∈ (𝑀...𝑁) → 𝜑)))
3212, 15, 31ralrimd 3264 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
33323ad2ant3 1136 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
3411, 33impbid 212 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  [wsbc 3788  (class class class)co 7431  cc 11153  cmin 11492  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  fzrevral2  13653  fzrevral3  13654  fzshftral  13655
  Copyright terms: Public domain W3C validator