MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrevral Structured version   Visualization version   GIF version

Theorem fzrevral 13590
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 483 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
2 elfzelz 13505 . . . . . . . 8 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
3 fzrev 13568 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
43anassrs 466 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
52, 4sylan2 591 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑘) ∈ (𝑀...𝑁)))
61, 5mpbid 231 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ (𝑀...𝑁))
7 rspsbc 3872 . . . . . 6 ((𝐾𝑘) ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
86, 7syl 17 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑))
98ex3 1344 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑗 ∈ (𝑀...𝑁)𝜑[(𝐾𝑘) / 𝑗]𝜑)))
109com23 86 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → [(𝐾𝑘) / 𝑗]𝜑)))
1110ralrimdv 3150 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 → ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
12 nfv 1915 . . . 4 𝑗 𝐾 ∈ ℤ
13 nfcv 2901 . . . . 5 𝑗((𝐾𝑁)...(𝐾𝑀))
14 nfsbc1v 3796 . . . . 5 𝑗[(𝐾𝑘) / 𝑗]𝜑
1513, 14nfralw 3306 . . . 4 𝑗𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑
16 fzrev2i 13570 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)))
17 oveq2 7419 . . . . . . . . . 10 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
1817sbceq1d 3781 . . . . . . . . 9 (𝑘 = (𝐾𝑗) → ([(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
1918rspcv 3607 . . . . . . . 8 ((𝐾𝑗) ∈ ((𝐾𝑁)...(𝐾𝑀)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2016, 19syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
21 zcn 12567 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
22 elfzelz 13505 . . . . . . . . . . 11 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
2322zcnd 12671 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℂ)
24 nncan 11493 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
2521, 23, 24syl2an 594 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐾 − (𝐾𝑗)) = 𝑗)
2625eqcomd 2736 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 = (𝐾 − (𝐾𝑗)))
27 sbceq1a 3787 . . . . . . . 8 (𝑗 = (𝐾 − (𝐾𝑗)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2826, 27syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝜑[(𝐾 − (𝐾𝑗)) / 𝑗]𝜑))
2920, 28sylibrd 258 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ (𝑀...𝑁)) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑))
3029ex 411 . . . . 5 (𝐾 ∈ ℤ → (𝑗 ∈ (𝑀...𝑁) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑𝜑)))
3130com23 86 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → (𝑗 ∈ (𝑀...𝑁) → 𝜑)))
3212, 15, 31ralrimd 3259 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
33323ad2ant3 1133 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝜑))
3411, 33impbid 211 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  [wsbc 3776  (class class class)co 7411  cc 11110  cmin 11448  cz 12562  ...cfz 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489
This theorem is referenced by:  fzrevral2  13591  fzrevral3  13592  fzshftral  13593
  Copyright terms: Public domain W3C validator