| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp3i2an | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| 3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| 3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
| 3 | 2 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: focofo 6767 ordunel 7782 naddel1 8628 distrlem5pr 10956 divmul 11816 modmulnn 13827 modaddid 13848 moddi 13880 repswpfx 14726 shftval2 15017 pcgcd 16825 gsumccat 18744 qussub 19099 gsumdixp 20204 lspun 20869 evlslem4 21959 ordtcld3 23062 sleadd1im 27870 fusgrfisstep 29232 cplgr3v 29338 upgr2pthnlp 29635 frgrreg 30296 eliuniin 45066 eliuniin2 45087 disjinfi 45159 |
| Copyright terms: Public domain | W3C validator |