MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp3i2an Structured version   Visualization version   GIF version

Theorem 3imp3i2an 1346
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
Hypotheses
Ref Expression
3imp3i2an.1 ((𝜑𝜓𝜒) → 𝜃)
3imp3i2an.2 ((𝜑𝜒) → 𝜏)
3imp3i2an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
3imp3i2an ((𝜑𝜓𝜒) → 𝜂)

Proof of Theorem 3imp3i2an
StepHypRef Expression
1 3imp3i2an.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
2 3imp3i2an.2 . . 3 ((𝜑𝜒) → 𝜏)
323adant2 1131 . 2 ((𝜑𝜓𝜒) → 𝜏)
4 3imp3i2an.3 . 2 ((𝜃𝜏) → 𝜂)
51, 3, 4syl2anc 584 1 ((𝜑𝜓𝜒) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  focofo  6756  ordunel  7766  naddel1  8611  distrlem5pr  10929  divmul  11790  modmulnn  13800  modaddid  13821  moddi  13853  repswpfx  14699  shftval2  14989  pcgcd  16797  gsumccat  18757  qussub  19111  gsumdixp  20245  lspun  20929  evlslem4  22022  ordtcld3  23134  sleadd1im  27950  fusgrfisstep  29328  cplgr3v  29434  upgr2pthnlp  29731  frgrreg  30395  eliuniin  45259  eliuniin2  45280  disjinfi  45352
  Copyright terms: Public domain W3C validator