| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp3i2an | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| 3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| 3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
| 3 | 2 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: focofo 6756 ordunel 7766 naddel1 8611 distrlem5pr 10929 divmul 11790 modmulnn 13800 modaddid 13821 moddi 13853 repswpfx 14699 shftval2 14989 pcgcd 16797 gsumccat 18757 qussub 19111 gsumdixp 20245 lspun 20929 evlslem4 22022 ordtcld3 23134 sleadd1im 27950 fusgrfisstep 29328 cplgr3v 29434 upgr2pthnlp 29731 frgrreg 30395 eliuniin 45259 eliuniin2 45280 disjinfi 45352 |
| Copyright terms: Public domain | W3C validator |