![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp3i2an | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
Ref | Expression |
---|---|
3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
3 | 2 | 3adant2 1129 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
5 | 1, 3, 4 | syl2anc 582 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: focofo 6817 ordunel 7817 naddel1 8688 distrlem5pr 11024 divmul 11879 modmulnn 13858 moddi 13908 repswpfx 14739 shftval2 15026 pcgcd 16815 gsumccat 18758 qussub 19106 gsumdixp 20207 lspun 20742 evlslem4 21856 ordtcld3 22923 sleadd1im 27709 fusgrfisstep 28853 cplgr3v 28959 upgr2pthnlp 29256 frgrreg 29914 eliuniin 44089 eliuniin2 44110 disjinfi 44189 |
Copyright terms: Public domain | W3C validator |