MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp3i2an Structured version   Visualization version   GIF version

Theorem 3imp3i2an 1346
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
Hypotheses
Ref Expression
3imp3i2an.1 ((𝜑𝜓𝜒) → 𝜃)
3imp3i2an.2 ((𝜑𝜒) → 𝜏)
3imp3i2an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
3imp3i2an ((𝜑𝜓𝜒) → 𝜂)

Proof of Theorem 3imp3i2an
StepHypRef Expression
1 3imp3i2an.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
2 3imp3i2an.2 . . 3 ((𝜑𝜒) → 𝜏)
323adant2 1131 . 2 ((𝜑𝜓𝜒) → 𝜏)
4 3imp3i2an.3 . 2 ((𝜃𝜏) → 𝜂)
51, 3, 4syl2anc 584 1 ((𝜑𝜓𝜒) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  focofo  6767  ordunel  7782  naddel1  8628  distrlem5pr  10956  divmul  11816  modmulnn  13827  modaddid  13848  moddi  13880  repswpfx  14726  shftval2  15017  pcgcd  16825  gsumccat  18744  qussub  19099  gsumdixp  20204  lspun  20869  evlslem4  21959  ordtcld3  23062  sleadd1im  27870  fusgrfisstep  29232  cplgr3v  29338  upgr2pthnlp  29635  frgrreg  30296  eliuniin  45066  eliuniin2  45087  disjinfi  45159
  Copyright terms: Public domain W3C validator