MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp3i2an Structured version   Visualization version   GIF version

Theorem 3imp3i2an 1346
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
Hypotheses
Ref Expression
3imp3i2an.1 ((𝜑𝜓𝜒) → 𝜃)
3imp3i2an.2 ((𝜑𝜒) → 𝜏)
3imp3i2an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
3imp3i2an ((𝜑𝜓𝜒) → 𝜂)

Proof of Theorem 3imp3i2an
StepHypRef Expression
1 3imp3i2an.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
2 3imp3i2an.2 . . 3 ((𝜑𝜒) → 𝜏)
323adant2 1131 . 2 ((𝜑𝜓𝜒) → 𝜏)
4 3imp3i2an.3 . 2 ((𝜃𝜏) → 𝜂)
51, 3, 4syl2anc 584 1 ((𝜑𝜓𝜒) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  focofo  6788  ordunel  7805  naddel1  8654  distrlem5pr  10987  divmul  11847  modmulnn  13858  modaddid  13879  moddi  13911  repswpfx  14757  shftval2  15048  pcgcd  16856  gsumccat  18775  qussub  19130  gsumdixp  20235  lspun  20900  evlslem4  21990  ordtcld3  23093  sleadd1im  27901  fusgrfisstep  29263  cplgr3v  29369  upgr2pthnlp  29669  frgrreg  30330  eliuniin  45100  eliuniin2  45121  disjinfi  45193
  Copyright terms: Public domain W3C validator