MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp3i2an Structured version   Visualization version   GIF version

Theorem 3imp3i2an 1346
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
Hypotheses
Ref Expression
3imp3i2an.1 ((𝜑𝜓𝜒) → 𝜃)
3imp3i2an.2 ((𝜑𝜒) → 𝜏)
3imp3i2an.3 ((𝜃𝜏) → 𝜂)
Assertion
Ref Expression
3imp3i2an ((𝜑𝜓𝜒) → 𝜂)

Proof of Theorem 3imp3i2an
StepHypRef Expression
1 3imp3i2an.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
2 3imp3i2an.2 . . 3 ((𝜑𝜒) → 𝜏)
323adant2 1131 . 2 ((𝜑𝜓𝜒) → 𝜏)
4 3imp3i2an.3 . 2 ((𝜃𝜏) → 𝜂)
51, 3, 4syl2anc 584 1 ((𝜑𝜓𝜒) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  focofo  6803  ordunel  7821  naddel1  8699  distrlem5pr  11041  divmul  11899  modmulnn  13906  moddi  13957  repswpfx  14803  shftval2  15094  pcgcd  16898  gsumccat  18819  qussub  19174  gsumdixp  20279  lspun  20944  evlslem4  22034  ordtcld3  23137  sleadd1im  27946  fusgrfisstep  29308  cplgr3v  29414  upgr2pthnlp  29714  frgrreg  30375  eliuniin  45123  eliuniin2  45144  disjinfi  45216
  Copyright terms: Public domain W3C validator