| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp3i2an | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| 3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| 3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
| 3 | 2 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: focofo 6785 ordunel 7802 naddel1 8651 distrlem5pr 10980 divmul 11840 modmulnn 13851 modaddid 13872 moddi 13904 repswpfx 14750 shftval2 15041 pcgcd 16849 gsumccat 18768 qussub 19123 gsumdixp 20228 lspun 20893 evlslem4 21983 ordtcld3 23086 sleadd1im 27894 fusgrfisstep 29256 cplgr3v 29362 upgr2pthnlp 29662 frgrreg 30323 eliuniin 45093 eliuniin2 45114 disjinfi 45186 |
| Copyright terms: Public domain | W3C validator |