![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp3i2an | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
Ref | Expression |
---|---|
3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
3 | 2 | 3adant2 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
5 | 1, 3, 4 | syl2anc 583 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: focofo 6847 ordunel 7863 naddel1 8743 distrlem5pr 11096 divmul 11952 modmulnn 13940 moddi 13990 repswpfx 14833 shftval2 15124 pcgcd 16925 gsumccat 18876 qussub 19231 gsumdixp 20342 lspun 21008 evlslem4 22123 ordtcld3 23228 sleadd1im 28038 fusgrfisstep 29364 cplgr3v 29470 upgr2pthnlp 29768 frgrreg 30426 eliuniin 45001 eliuniin2 45022 disjinfi 45099 |
Copyright terms: Public domain | W3C validator |