Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnlem2 Structured version   Visualization version   GIF version

Theorem iunconnlem2 44928
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44928 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44928. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnlem2.1 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
iunconnlem2.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnlem2.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnlem2.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnlem2.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnlem2 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝑢,𝑘,𝑣,𝜑   𝐴,𝑘,𝑢,𝑣   𝑢,𝐵,𝑣   𝑘,𝐽,𝑢,𝑣   𝑃,𝑘   𝑘,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜓(𝑣,𝑢,𝑘)   𝐵(𝑘)   𝑃(𝑣,𝑢)

Proof of Theorem iunconnlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunconnlem2.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iunconnlem2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑋)
32ex 412 . . . 4 (𝜑 → (𝑘𝐴𝐵𝑋))
43ralrimiv 3120 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
5 iunss 4994 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
65biimpri 228 . . 3 (∀𝑘𝐴 𝐵𝑋 𝑘𝐴 𝐵𝑋)
74, 6syl 17 . 2 (𝜑 𝑘𝐴 𝐵𝑋)
8 iunconnlem2.1 . . . . . . . . . . . 12 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
98biimpi 216 . . . . . . . . . . . . . . 15 (𝜓 → ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
109simprd 495 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
11 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
129, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝜓 → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
13 n0 4304 . . . . . . . . . . . . . . . . . . 19 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1413biimpi 216 . . . . . . . . . . . . . . . . . 18 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1512, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜓 → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
16 inss2 4189 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 𝑘𝐴 𝐵) ⊆ 𝑘𝐴 𝐵
17 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1816, 17sselid 3933 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 𝑘𝐴 𝐵)
19 eliun 4945 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑤𝐵)
2019biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑤 𝑘𝐴 𝐵 → ∃𝑘𝐴 𝑤𝐵)
2118, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → ∃𝑘𝐴 𝑤𝐵)
22 rexn0 4462 . . . . . . . . . . . . . . . . . . 19 (∃𝑘𝐴 𝑤𝐵𝐴 ≠ ∅)
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2423exlimiv 1930 . . . . . . . . . . . . . . . . 17 (∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2515, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜓𝐴 ≠ ∅)
26 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑𝑢𝐽)
27 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 𝑣𝐽
2826, 27nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑𝑢𝐽) ∧ 𝑣𝐽)
29 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢
30 nfiu1 4977 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 𝑘𝐴 𝐵
3129, 30nfin 4175 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑢 𝑘𝐴 𝐵)
32 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘
3331, 32nfne 3026 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
3428, 33nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑘(((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅)
35 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑣
3635, 30nfin 4175 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑣 𝑘𝐴 𝐵)
3736, 32nfne 3026 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
3834, 37nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑘((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅)
39 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑢𝑣)
40 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑋
4140, 30nfdif 4080 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑋 𝑘𝐴 𝐵)
4239, 41nfss 3928 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4338, 42nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑘(((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
44 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣)
4530, 44nfss 3928 . . . . . . . . . . . . . . . . . . 19 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
4643, 45nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
478nfbii 1852 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑘𝜓 ↔ Ⅎ𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
4846, 47mpbir 231 . . . . . . . . . . . . . . . . 17 𝑘𝜓
49 simp-6l 786 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
509, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜓𝜑)
51 iunconnlem2.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑃𝐵)
5250, 51sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜓𝑘𝐴) → 𝑃𝐵)
5352ex 412 . . . . . . . . . . . . . . . . 17 (𝜓 → (𝑘𝐴𝑃𝐵))
5448, 53ralrimi 3227 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑘𝐴 𝑃𝐵)
55 r19.2z 4446 . . . . . . . . . . . . . . . . . 18 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5655ancoms 458 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 𝑃𝐵𝐴 ≠ ∅) → ∃𝑘𝐴 𝑃𝐵)
5756ancoms 458 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5825, 54, 57syl2anc 584 . . . . . . . . . . . . . . 15 (𝜓 → ∃𝑘𝐴 𝑃𝐵)
59 eliun 4945 . . . . . . . . . . . . . . . 16 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
6059biimpri 228 . . . . . . . . . . . . . . 15 (∃𝑘𝐴 𝑃𝐵𝑃 𝑘𝐴 𝐵)
6158, 60syl 17 . . . . . . . . . . . . . 14 (𝜓𝑃 𝑘𝐴 𝐵)
6210, 61sseldd 3936 . . . . . . . . . . . . 13 (𝜓𝑃 ∈ (𝑢𝑣))
63 elun 4104 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
6463biimpi 216 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑢𝑣) → (𝑃𝑢𝑃𝑣))
6562, 64syl 17 . . . . . . . . . . . 12 (𝜓 → (𝑃𝑢𝑃𝑣))
668, 65sylbir 235 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
6750, 1syl 17 . . . . . . . . . . . . . 14 (𝜓𝐽 ∈ (TopOn‘𝑋))
6850, 2sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → 𝐵𝑋)
69 iunconnlem2.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
7050, 69sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
71 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
729, 71syl 17 . . . . . . . . . . . . . 14 (𝜓𝑢𝐽)
73 simp-5r 785 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
749, 73syl 17 . . . . . . . . . . . . . 14 (𝜓𝑣𝐽)
75 simpllr 775 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
769, 75syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
77 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
789, 77syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconnlem 23312 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑢)
80 incom 4160 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8180, 78eqsstrid 3974 . . . . . . . . . . . . . 14 (𝜓 → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
82 uncom 4109 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8310, 82sseqtrrdi 3977 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconnlem 23312 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑣)
85 pm4.56 990 . . . . . . . . . . . . . . 15 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) ↔ ¬ (𝑃𝑢𝑃𝑣))
8685biimpi 216 . . . . . . . . . . . . . 14 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8786idiALT 44472 . . . . . . . . . . . . 13 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8879, 84, 87syl2anc 584 . . . . . . . . . . . 12 (𝜓 → ¬ (𝑃𝑢𝑃𝑣))
898, 88sylbir 235 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
9066, 89pm2.65da 816 . . . . . . . . . 10 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
9190ex 412 . . . . . . . . 9 (((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
9291ex 412 . . . . . . . 8 ((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9392ex3 1347 . . . . . . 7 ((𝜑𝑢𝐽𝑣𝐽) → ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
94933impd 1349 . . . . . 6 ((𝜑𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
95943expia 1121 . . . . 5 ((𝜑𝑢𝐽) → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9695ex 412 . . . 4 (𝜑 → (𝑢𝐽 → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
9796impd 410 . . 3 (𝜑 → ((𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9897ralrimivv 3170 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
99 connsub 23306 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
10099biimp3ar 1472 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋 ∧ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))) → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
1011, 7, 98, 100syl3anc 1373 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wex 1779  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284   ciun 4941  cfv 6482  (class class class)co 7349  t crest 17324  TopOnctopon 22795  Conncconn 23296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-en 8873  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-conn 23297
This theorem is referenced by:  iunconnALT  44929
  Copyright terms: Public domain W3C validator