Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnlem2 Structured version   Visualization version   GIF version

Theorem iunconnlem2 44893
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44893 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44893. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnlem2.1 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
iunconnlem2.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnlem2.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnlem2.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnlem2.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnlem2 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝑢,𝑘,𝑣,𝜑   𝐴,𝑘,𝑢,𝑣   𝑢,𝐵,𝑣   𝑘,𝐽,𝑢,𝑣   𝑃,𝑘   𝑘,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜓(𝑣,𝑢,𝑘)   𝐵(𝑘)   𝑃(𝑣,𝑢)

Proof of Theorem iunconnlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunconnlem2.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iunconnlem2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑋)
32ex 412 . . . 4 (𝜑 → (𝑘𝐴𝐵𝑋))
43ralrimiv 3129 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
5 iunss 5019 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
65biimpri 228 . . 3 (∀𝑘𝐴 𝐵𝑋 𝑘𝐴 𝐵𝑋)
74, 6syl 17 . 2 (𝜑 𝑘𝐴 𝐵𝑋)
8 iunconnlem2.1 . . . . . . . . . . . 12 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
98biimpi 216 . . . . . . . . . . . . . . 15 (𝜓 → ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
109simprd 495 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
11 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
129, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝜓 → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
13 n0 4326 . . . . . . . . . . . . . . . . . . 19 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1413biimpi 216 . . . . . . . . . . . . . . . . . 18 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1512, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜓 → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
16 inss2 4211 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 𝑘𝐴 𝐵) ⊆ 𝑘𝐴 𝐵
17 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1816, 17sselid 3954 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 𝑘𝐴 𝐵)
19 eliun 4969 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑤𝐵)
2019biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑤 𝑘𝐴 𝐵 → ∃𝑘𝐴 𝑤𝐵)
2118, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → ∃𝑘𝐴 𝑤𝐵)
22 rexn0 4484 . . . . . . . . . . . . . . . . . . 19 (∃𝑘𝐴 𝑤𝐵𝐴 ≠ ∅)
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2423exlimiv 1929 . . . . . . . . . . . . . . . . 17 (∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2515, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜓𝐴 ≠ ∅)
26 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑𝑢𝐽)
27 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 𝑣𝐽
2826, 27nfan 1898 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑𝑢𝐽) ∧ 𝑣𝐽)
29 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢
30 nfiu1 5001 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 𝑘𝐴 𝐵
3129, 30nfin 4197 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑢 𝑘𝐴 𝐵)
32 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘
3331, 32nfne 3032 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
3428, 33nfan 1898 . . . . . . . . . . . . . . . . . . . . 21 𝑘(((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅)
35 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑣
3635, 30nfin 4197 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑣 𝑘𝐴 𝐵)
3736, 32nfne 3032 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
3834, 37nfan 1898 . . . . . . . . . . . . . . . . . . . 20 𝑘((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅)
39 nfcv 2897 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑢𝑣)
40 nfcv 2897 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑋
4140, 30nfdif 4102 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑋 𝑘𝐴 𝐵)
4239, 41nfss 3949 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4338, 42nfan 1898 . . . . . . . . . . . . . . . . . . 19 𝑘(((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
44 nfcv 2897 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣)
4530, 44nfss 3949 . . . . . . . . . . . . . . . . . . 19 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
4643, 45nfan 1898 . . . . . . . . . . . . . . . . . 18 𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
478nfbii 1851 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑘𝜓 ↔ Ⅎ𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
4846, 47mpbir 231 . . . . . . . . . . . . . . . . 17 𝑘𝜓
49 simp-6l 786 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
509, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜓𝜑)
51 iunconnlem2.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑃𝐵)
5250, 51sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜓𝑘𝐴) → 𝑃𝐵)
5352ex 412 . . . . . . . . . . . . . . . . 17 (𝜓 → (𝑘𝐴𝑃𝐵))
5448, 53ralrimi 3238 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑘𝐴 𝑃𝐵)
55 r19.2z 4468 . . . . . . . . . . . . . . . . . 18 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5655ancoms 458 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 𝑃𝐵𝐴 ≠ ∅) → ∃𝑘𝐴 𝑃𝐵)
5756ancoms 458 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5825, 54, 57syl2anc 584 . . . . . . . . . . . . . . 15 (𝜓 → ∃𝑘𝐴 𝑃𝐵)
59 eliun 4969 . . . . . . . . . . . . . . . 16 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
6059biimpri 228 . . . . . . . . . . . . . . 15 (∃𝑘𝐴 𝑃𝐵𝑃 𝑘𝐴 𝐵)
6158, 60syl 17 . . . . . . . . . . . . . 14 (𝜓𝑃 𝑘𝐴 𝐵)
6210, 61sseldd 3957 . . . . . . . . . . . . 13 (𝜓𝑃 ∈ (𝑢𝑣))
63 elun 4126 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
6463biimpi 216 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑢𝑣) → (𝑃𝑢𝑃𝑣))
6562, 64syl 17 . . . . . . . . . . . 12 (𝜓 → (𝑃𝑢𝑃𝑣))
668, 65sylbir 235 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
6750, 1syl 17 . . . . . . . . . . . . . 14 (𝜓𝐽 ∈ (TopOn‘𝑋))
6850, 2sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → 𝐵𝑋)
69 iunconnlem2.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
7050, 69sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
71 simp-6r 787 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
729, 71syl 17 . . . . . . . . . . . . . 14 (𝜓𝑢𝐽)
73 simp-5r 785 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
749, 73syl 17 . . . . . . . . . . . . . 14 (𝜓𝑣𝐽)
75 simpllr 775 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
769, 75syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
77 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
789, 77syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconnlem 23352 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑢)
80 incom 4182 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8180, 78eqsstrid 3995 . . . . . . . . . . . . . 14 (𝜓 → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
82 uncom 4131 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8310, 82sseqtrrdi 3998 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconnlem 23352 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑣)
85 pm4.56 990 . . . . . . . . . . . . . . 15 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) ↔ ¬ (𝑃𝑢𝑃𝑣))
8685biimpi 216 . . . . . . . . . . . . . 14 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8786idiALT 44436 . . . . . . . . . . . . 13 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8879, 84, 87syl2anc 584 . . . . . . . . . . . 12 (𝜓 → ¬ (𝑃𝑢𝑃𝑣))
898, 88sylbir 235 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
9066, 89pm2.65da 816 . . . . . . . . . 10 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
9190ex 412 . . . . . . . . 9 (((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
9291ex 412 . . . . . . . 8 ((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9392ex3 1346 . . . . . . 7 ((𝜑𝑢𝐽𝑣𝐽) → ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
94933impd 1348 . . . . . 6 ((𝜑𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
95943expia 1121 . . . . 5 ((𝜑𝑢𝐽) → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9695ex 412 . . . 4 (𝜑 → (𝑢𝐽 → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
9796impd 410 . . 3 (𝜑 → ((𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9897ralrimivv 3183 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
99 connsub 23346 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
10099biimp3ar 1471 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋 ∧ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))) → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
1011, 7, 98, 100syl3anc 1372 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wex 1778  wnf 1782  wcel 2107  wne 2931  wral 3050  wrex 3059  cdif 3921  cun 3922  cin 3923  wss 3924  c0 4306   ciun 4965  cfv 6528  (class class class)co 7400  t crest 17421  TopOnctopon 22835  Conncconn 23336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-en 8955  df-fin 8958  df-fi 9418  df-rest 17423  df-topgen 17444  df-top 22819  df-topon 22836  df-bases 22871  df-cld 22944  df-conn 23337
This theorem is referenced by:  iunconnALT  44894
  Copyright terms: Public domain W3C validator