Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnlem2 Structured version   Visualization version   GIF version

Theorem iunconnlem2 43207
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 43207 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 43207. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnlem2.1 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
iunconnlem2.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnlem2.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnlem2.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnlem2.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnlem2 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝑢,𝑘,𝑣,𝜑   𝐴,𝑘,𝑢,𝑣   𝑢,𝐵,𝑣   𝑘,𝐽,𝑢,𝑣   𝑃,𝑘   𝑘,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜓(𝑣,𝑢,𝑘)   𝐵(𝑘)   𝑃(𝑣,𝑢)

Proof of Theorem iunconnlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunconnlem2.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iunconnlem2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑋)
32ex 413 . . . 4 (𝜑 → (𝑘𝐴𝐵𝑋))
43ralrimiv 3142 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
5 iunss 5005 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
65biimpri 227 . . 3 (∀𝑘𝐴 𝐵𝑋 𝑘𝐴 𝐵𝑋)
74, 6syl 17 . 2 (𝜑 𝑘𝐴 𝐵𝑋)
8 iunconnlem2.1 . . . . . . . . . . . 12 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
98biimpi 215 . . . . . . . . . . . . . . 15 (𝜓 → ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
109simprd 496 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
11 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
129, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝜓 → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
13 n0 4306 . . . . . . . . . . . . . . . . . . 19 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1413biimpi 215 . . . . . . . . . . . . . . . . . 18 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1512, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜓 → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
16 inss2 4189 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 𝑘𝐴 𝐵) ⊆ 𝑘𝐴 𝐵
17 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1816, 17sselid 3942 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 𝑘𝐴 𝐵)
19 eliun 4958 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑤𝐵)
2019biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑤 𝑘𝐴 𝐵 → ∃𝑘𝐴 𝑤𝐵)
2118, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → ∃𝑘𝐴 𝑤𝐵)
22 rexn0 4468 . . . . . . . . . . . . . . . . . . 19 (∃𝑘𝐴 𝑤𝐵𝐴 ≠ ∅)
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2423exlimiv 1933 . . . . . . . . . . . . . . . . 17 (∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2515, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜓𝐴 ≠ ∅)
26 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑𝑢𝐽)
27 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 𝑣𝐽
2826, 27nfan 1902 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑𝑢𝐽) ∧ 𝑣𝐽)
29 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢
30 nfiu1 4988 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 𝑘𝐴 𝐵
3129, 30nfin 4176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑢 𝑘𝐴 𝐵)
32 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘
3331, 32nfne 3045 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
3428, 33nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑘(((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅)
35 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑣
3635, 30nfin 4176 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑣 𝑘𝐴 𝐵)
3736, 32nfne 3045 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
3834, 37nfan 1902 . . . . . . . . . . . . . . . . . . . 20 𝑘((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅)
39 nfcv 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑢𝑣)
40 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑋
4140, 30nfdif 4085 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑋 𝑘𝐴 𝐵)
4239, 41nfss 3936 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4338, 42nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑘(((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
44 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣)
4530, 44nfss 3936 . . . . . . . . . . . . . . . . . . 19 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
4643, 45nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
478nfbii 1854 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑘𝜓 ↔ Ⅎ𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
4846, 47mpbir 230 . . . . . . . . . . . . . . . . 17 𝑘𝜓
49 simp-6l 785 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
509, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜓𝜑)
51 iunconnlem2.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑃𝐵)
5250, 51sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜓𝑘𝐴) → 𝑃𝐵)
5352ex 413 . . . . . . . . . . . . . . . . 17 (𝜓 → (𝑘𝐴𝑃𝐵))
5448, 53ralrimi 3240 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑘𝐴 𝑃𝐵)
55 r19.2z 4452 . . . . . . . . . . . . . . . . . 18 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5655ancoms 459 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 𝑃𝐵𝐴 ≠ ∅) → ∃𝑘𝐴 𝑃𝐵)
5756ancoms 459 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5825, 54, 57syl2anc 584 . . . . . . . . . . . . . . 15 (𝜓 → ∃𝑘𝐴 𝑃𝐵)
59 eliun 4958 . . . . . . . . . . . . . . . 16 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
6059biimpri 227 . . . . . . . . . . . . . . 15 (∃𝑘𝐴 𝑃𝐵𝑃 𝑘𝐴 𝐵)
6158, 60syl 17 . . . . . . . . . . . . . 14 (𝜓𝑃 𝑘𝐴 𝐵)
6210, 61sseldd 3945 . . . . . . . . . . . . 13 (𝜓𝑃 ∈ (𝑢𝑣))
63 elun 4108 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
6463biimpi 215 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑢𝑣) → (𝑃𝑢𝑃𝑣))
6562, 64syl 17 . . . . . . . . . . . 12 (𝜓 → (𝑃𝑢𝑃𝑣))
668, 65sylbir 234 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
6750, 1syl 17 . . . . . . . . . . . . . 14 (𝜓𝐽 ∈ (TopOn‘𝑋))
6850, 2sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → 𝐵𝑋)
69 iunconnlem2.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
7050, 69sylan 580 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
71 simp-6r 786 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
729, 71syl 17 . . . . . . . . . . . . . 14 (𝜓𝑢𝐽)
73 simp-5r 784 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
749, 73syl 17 . . . . . . . . . . . . . 14 (𝜓𝑣𝐽)
75 simpllr 774 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
769, 75syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
77 simplr 767 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
789, 77syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconnlem 22778 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑢)
80 incom 4161 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8180, 78eqsstrid 3992 . . . . . . . . . . . . . 14 (𝜓 → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
82 uncom 4113 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8310, 82sseqtrrdi 3995 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconnlem 22778 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑣)
85 pm4.56 987 . . . . . . . . . . . . . . 15 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) ↔ ¬ (𝑃𝑢𝑃𝑣))
8685biimpi 215 . . . . . . . . . . . . . 14 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8786idiALT 42749 . . . . . . . . . . . . 13 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8879, 84, 87syl2anc 584 . . . . . . . . . . . 12 (𝜓 → ¬ (𝑃𝑢𝑃𝑣))
898, 88sylbir 234 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
9066, 89pm2.65da 815 . . . . . . . . . 10 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
9190ex 413 . . . . . . . . 9 (((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
9291ex 413 . . . . . . . 8 ((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9392ex3 1346 . . . . . . 7 ((𝜑𝑢𝐽𝑣𝐽) → ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
94933impd 1348 . . . . . 6 ((𝜑𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
95943expia 1121 . . . . 5 ((𝜑𝑢𝐽) → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9695ex 413 . . . 4 (𝜑 → (𝑢𝐽 → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
9796impd 411 . . 3 (𝜑 → ((𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9897ralrimivv 3195 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
99 connsub 22772 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
10099biimp3ar 1470 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋 ∧ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))) → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
1011, 7, 98, 100syl3anc 1371 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wex 1781  wnf 1785  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   ciun 4954  cfv 6496  (class class class)co 7357  t crest 17302  TopOnctopon 22259  Conncconn 22762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-en 8884  df-fin 8887  df-fi 9347  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-conn 22763
This theorem is referenced by:  iunconnALT  43208
  Copyright terms: Public domain W3C validator