Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnlem2 Structured version   Visualization version   GIF version

Theorem iunconnlem2 42228
Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 42228 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 42228. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnlem2.1 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
iunconnlem2.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnlem2.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnlem2.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnlem2.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnlem2 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝑢,𝑘,𝑣,𝜑   𝐴,𝑘,𝑢,𝑣   𝑢,𝐵,𝑣   𝑘,𝐽,𝑢,𝑣   𝑃,𝑘   𝑘,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜓(𝑣,𝑢,𝑘)   𝐵(𝑘)   𝑃(𝑣,𝑢)

Proof of Theorem iunconnlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunconnlem2.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iunconnlem2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑋)
32ex 416 . . . 4 (𝜑 → (𝑘𝐴𝐵𝑋))
43ralrimiv 3104 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
5 iunss 4954 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
65biimpri 231 . . 3 (∀𝑘𝐴 𝐵𝑋 𝑘𝐴 𝐵𝑋)
74, 6syl 17 . 2 (𝜑 𝑘𝐴 𝐵𝑋)
8 iunconnlem2.1 . . . . . . . . . . . 12 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
98biimpi 219 . . . . . . . . . . . . . . 15 (𝜓 → ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
109simprd 499 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
11 simp-4r 784 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
129, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝜓 → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
13 n0 4261 . . . . . . . . . . . . . . . . . . 19 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1413biimpi 219 . . . . . . . . . . . . . . . . . 18 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1512, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜓 → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
16 inss2 4144 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 𝑘𝐴 𝐵) ⊆ 𝑘𝐴 𝐵
17 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1816, 17sseldi 3899 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 𝑘𝐴 𝐵)
19 eliun 4908 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑤𝐵)
2019biimpi 219 . . . . . . . . . . . . . . . . . . . 20 (𝑤 𝑘𝐴 𝐵 → ∃𝑘𝐴 𝑤𝐵)
2118, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → ∃𝑘𝐴 𝑤𝐵)
22 rexn0 4422 . . . . . . . . . . . . . . . . . . 19 (∃𝑘𝐴 𝑤𝐵𝐴 ≠ ∅)
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2423exlimiv 1938 . . . . . . . . . . . . . . . . 17 (∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2515, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜓𝐴 ≠ ∅)
26 nfv 1922 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑𝑢𝐽)
27 nfv 1922 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 𝑣𝐽
2826, 27nfan 1907 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑𝑢𝐽) ∧ 𝑣𝐽)
29 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢
30 nfiu1 4938 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 𝑘𝐴 𝐵
3129, 30nfin 4131 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑢 𝑘𝐴 𝐵)
32 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘
3331, 32nfne 3042 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
3428, 33nfan 1907 . . . . . . . . . . . . . . . . . . . . 21 𝑘(((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅)
35 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑣
3635, 30nfin 4131 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑣 𝑘𝐴 𝐵)
3736, 32nfne 3042 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
3834, 37nfan 1907 . . . . . . . . . . . . . . . . . . . 20 𝑘((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅)
39 nfcv 2904 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑢𝑣)
40 nfcv 2904 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑋
4140, 30nfdif 4040 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑋 𝑘𝐴 𝐵)
4239, 41nfss 3892 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4338, 42nfan 1907 . . . . . . . . . . . . . . . . . . 19 𝑘(((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
44 nfcv 2904 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣)
4530, 44nfss 3892 . . . . . . . . . . . . . . . . . . 19 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
4643, 45nfan 1907 . . . . . . . . . . . . . . . . . 18 𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
478nfbii 1859 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑘𝜓 ↔ Ⅎ𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
4846, 47mpbir 234 . . . . . . . . . . . . . . . . 17 𝑘𝜓
49 simp-6l 787 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
509, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜓𝜑)
51 iunconnlem2.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑃𝐵)
5250, 51sylan 583 . . . . . . . . . . . . . . . . . 18 ((𝜓𝑘𝐴) → 𝑃𝐵)
5352ex 416 . . . . . . . . . . . . . . . . 17 (𝜓 → (𝑘𝐴𝑃𝐵))
5448, 53ralrimi 3137 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑘𝐴 𝑃𝐵)
55 r19.2z 4406 . . . . . . . . . . . . . . . . . 18 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5655ancoms 462 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 𝑃𝐵𝐴 ≠ ∅) → ∃𝑘𝐴 𝑃𝐵)
5756ancoms 462 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5825, 54, 57syl2anc 587 . . . . . . . . . . . . . . 15 (𝜓 → ∃𝑘𝐴 𝑃𝐵)
59 eliun 4908 . . . . . . . . . . . . . . . 16 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
6059biimpri 231 . . . . . . . . . . . . . . 15 (∃𝑘𝐴 𝑃𝐵𝑃 𝑘𝐴 𝐵)
6158, 60syl 17 . . . . . . . . . . . . . 14 (𝜓𝑃 𝑘𝐴 𝐵)
6210, 61sseldd 3902 . . . . . . . . . . . . 13 (𝜓𝑃 ∈ (𝑢𝑣))
63 elun 4063 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
6463biimpi 219 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑢𝑣) → (𝑃𝑢𝑃𝑣))
6562, 64syl 17 . . . . . . . . . . . 12 (𝜓 → (𝑃𝑢𝑃𝑣))
668, 65sylbir 238 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
6750, 1syl 17 . . . . . . . . . . . . . 14 (𝜓𝐽 ∈ (TopOn‘𝑋))
6850, 2sylan 583 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → 𝐵𝑋)
69 iunconnlem2.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
7050, 69sylan 583 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
71 simp-6r 788 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
729, 71syl 17 . . . . . . . . . . . . . 14 (𝜓𝑢𝐽)
73 simp-5r 786 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
749, 73syl 17 . . . . . . . . . . . . . 14 (𝜓𝑣𝐽)
75 simpllr 776 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
769, 75syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
77 simplr 769 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
789, 77syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconnlem 22324 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑢)
80 incom 4115 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8180, 78eqsstrid 3949 . . . . . . . . . . . . . 14 (𝜓 → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
82 uncom 4067 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8310, 82sseqtrrdi 3952 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconnlem 22324 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑣)
85 pm4.56 989 . . . . . . . . . . . . . . 15 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) ↔ ¬ (𝑃𝑢𝑃𝑣))
8685biimpi 219 . . . . . . . . . . . . . 14 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8786idiALT 41770 . . . . . . . . . . . . 13 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8879, 84, 87syl2anc 587 . . . . . . . . . . . 12 (𝜓 → ¬ (𝑃𝑢𝑃𝑣))
898, 88sylbir 238 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
9066, 89pm2.65da 817 . . . . . . . . . 10 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
9190ex 416 . . . . . . . . 9 (((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
9291ex 416 . . . . . . . 8 ((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9392ex3 1348 . . . . . . 7 ((𝜑𝑢𝐽𝑣𝐽) → ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
94933impd 1350 . . . . . 6 ((𝜑𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
95943expia 1123 . . . . 5 ((𝜑𝑢𝐽) → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9695ex 416 . . . 4 (𝜑 → (𝑢𝐽 → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
9796impd 414 . . 3 (𝜑 → ((𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9897ralrimivv 3111 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
99 connsub 22318 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
10099biimp3ar 1472 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋 ∧ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))) → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
1011, 7, 98, 100syl3anc 1373 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089  wex 1787  wnf 1791  wcel 2110  wne 2940  wral 3061  wrex 3062  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237   ciun 4904  cfv 6380  (class class class)co 7213  t crest 16925  TopOnctopon 21807  Conncconn 22308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-en 8627  df-fin 8630  df-fi 9027  df-rest 16927  df-topgen 16948  df-top 21791  df-topon 21808  df-bases 21843  df-cld 21916  df-conn 22309
This theorem is referenced by:  iunconnALT  42229
  Copyright terms: Public domain W3C validator