Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbidh | Structured version Visualization version GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
exbidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
exbidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbidh | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbidh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | exbidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | alexbii 1835 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: exbidv 1924 exbid 2216 bj-elgab 35127 ac6s6 36330 |
Copyright terms: Public domain | W3C validator |