![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1833 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 19.40 1885 moexexlem 2629 elissetv 2825 clelab 2890 elexOLD 3510 sbc5ALT 3833 r19.2zb 4519 dmcoss 5997 suppimacnvss 8214 unblem2 9357 kmlem8 10227 isssc 17881 krull 33472 bnj1143 34766 bnj1371 35005 bnj1374 35007 atex 39363 rtrclex 43579 clcnvlem 43585 pm10.55 44338 |
Copyright terms: Public domain | W3C validator |