| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | eximi 1835 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.40 1886 moexexlem 2619 elissetv 2809 clelab 2873 elexOLD 3460 sbc5ALT 3773 r19.2zb 4449 dmcoss 5920 dmcossOLD 5921 suppimacnvss 8113 unblem2 9198 kmlem8 10071 isssc 17745 krull 33429 bnj1143 34759 bnj1371 34998 bnj1374 35000 atex 39388 rtrclex 43593 clcnvlem 43599 pm10.55 44345 |
| Copyright terms: Public domain | W3C validator |