| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | eximi 1836 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.40 1887 moexexlem 2623 elissetv 2814 clelab 2877 elexOLD 3459 sbc5ALT 3766 dmcoss 5920 dmcossOLD 5921 suppimacnvss 8111 unblem2 9186 kmlem8 10058 isssc 17731 krull 33453 bnj1143 34825 bnj1371 35064 bnj1374 35066 atex 39528 rtrclex 43737 clcnvlem 43743 pm10.55 44489 |
| Copyright terms: Public domain | W3C validator |