MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpl Structured version   Visualization version   GIF version

Theorem exsimpl 1869
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
21eximi 1836 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  19.40  1887  moexexlem  2623  elissetv  2814  clelab  2877  elexOLD  3459  sbc5ALT  3766  dmcoss  5920  dmcossOLD  5921  suppimacnvss  8111  unblem2  9186  kmlem8  10058  isssc  17731  krull  33453  bnj1143  34825  bnj1371  35064  bnj1374  35066  atex  39528  rtrclex  43737  clcnvlem  43743  pm10.55  44489
  Copyright terms: Public domain W3C validator