MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpl Structured version   Visualization version   GIF version

Theorem exsimpl 1872
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 484 . 2 ((𝜑𝜓) → 𝜑)
21eximi 1838 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783
This theorem is referenced by:  19.40  1890  moexexlem  2623  elissetv  2815  clelab  2880  elex  3493  sbc5ALT  3807  r19.2zb  4496  dmcoss  5971  suppimacnvss  8158  unblem2  9296  kmlem8  10152  isssc  17767  krull  32594  bnj1143  33801  bnj1371  34040  bnj1374  34042  atex  38277  rtrclex  42368  clcnvlem  42374  pm10.55  43128
  Copyright terms: Public domain W3C validator