| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | eximi 1836 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.40 1887 moexexlem 2621 elissetv 2812 clelab 2876 elexOLD 3458 sbc5ALT 3770 r19.2zb 4446 dmcoss 5914 dmcossOLD 5915 suppimacnvss 8103 unblem2 9177 kmlem8 10049 isssc 17727 krull 33442 bnj1143 34800 bnj1371 35039 bnj1374 35041 atex 39451 rtrclex 43656 clcnvlem 43662 pm10.55 44408 |
| Copyright terms: Public domain | W3C validator |