| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version | ||
| Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | eximi 1835 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.40 1886 moexexlem 2619 elissetv 2809 clelab 2873 elexOLD 3469 sbc5ALT 3782 r19.2zb 4459 dmcoss 5938 suppimacnvss 8152 unblem2 9240 kmlem8 10111 isssc 17782 krull 33450 bnj1143 34780 bnj1371 35019 bnj1374 35021 atex 39400 rtrclex 43606 clcnvlem 43612 pm10.55 44358 |
| Copyright terms: Public domain | W3C validator |