Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1841 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 |
This theorem is referenced by: 19.40 1893 moexexlem 2630 elissetv 2821 clelab 2885 elex 3449 sbc5ALT 3749 r19.2zb 4432 dmcoss 5879 suppimacnvss 7980 unblem2 9045 kmlem8 9914 isssc 17530 krull 31639 bnj1143 32766 bnj1371 33005 bnj1374 33007 atex 37416 rtrclex 41195 clcnvlem 41201 pm10.55 41957 |
Copyright terms: Public domain | W3C validator |