![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1835 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 |
This theorem is referenced by: 19.40 1887 moexexlem 2620 elissetv 2812 clelab 2877 elex 3491 sbc5ALT 3805 r19.2zb 4494 dmcoss 5969 suppimacnvss 8160 unblem2 9298 kmlem8 10154 isssc 17771 krull 32868 bnj1143 34099 bnj1371 34338 bnj1374 34340 atex 38580 rtrclex 42670 clcnvlem 42676 pm10.55 43430 |
Copyright terms: Public domain | W3C validator |