MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpl Structured version   Visualization version   GIF version

Theorem exsimpl 1869
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
21eximi 1836 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  19.40  1887  moexexlem  2621  elissetv  2812  clelab  2876  elexOLD  3458  sbc5ALT  3770  r19.2zb  4446  dmcoss  5914  dmcossOLD  5915  suppimacnvss  8103  unblem2  9177  kmlem8  10049  isssc  17727  krull  33442  bnj1143  34800  bnj1371  35039  bnj1374  35041  atex  39451  rtrclex  43656  clcnvlem  43662  pm10.55  44408
  Copyright terms: Public domain W3C validator