Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albidh | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
albidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
albidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidh | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimih 1826 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | albi 1821 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: albidv 1923 albid 2215 dral1v 2367 bj-equsalvwd 34962 dral2-o 36944 ax12indalem 36959 ax12inda2ALT 36960 ax12inda 36962 |
Copyright terms: Public domain | W3C validator |