| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidh | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| albidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidh | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimih 1824 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | albi 1818 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: albidv 1920 albid 2222 dral1v 2372 bj-equsalvwd 36781 dral2-o 38931 ax12indalem 38946 ax12inda2ALT 38947 ax12inda 38949 |
| Copyright terms: Public domain | W3C validator |