| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albidh | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| albidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| albidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albidh | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimih 1823 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | albi 1817 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: albidv 1919 albid 2221 dral1v 2370 bj-equsalvwd 36740 dral2-o 38890 ax12indalem 38905 ax12inda2ALT 38906 ax12inda 38908 |
| Copyright terms: Public domain | W3C validator |