MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbid Structured version   Visualization version   GIF version

Theorem exbid 2224
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbid (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3exbidh 1867 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfbidf  2225  drex2  2440  rexbida  3241  rexeqfOLD  3320  opabbid  5157  zfrepclf  5230  dfid3  5517  oprabbid  7414  axrepndlem1  10486  axrepndlem2  10487  axrepnd  10488  axpowndlem2  10492  axpowndlem3  10493  axpowndlem4  10494  axregnd  10498  axinfndlem1  10499  axinfnd  10500  axacndlem4  10504  axacndlem5  10505  axacnd  10506  opabdm  32556  opabrn  32557  pm14.122b  44406  pm14.123b  44409  modelaxreplem3  44964
  Copyright terms: Public domain W3C validator