MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbid Structured version   Visualization version   GIF version

Theorem exbid 2217
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbid (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2189 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3exbidh 1871 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfbidf  2218  drex2  2442  rexbida  3270  rexeqfOLD  3352  opabbid  5214  zfrepclf  5295  dfid3  5578  oprabbid  7474  axrepndlem1  10587  axrepndlem2  10588  axrepnd  10589  axpowndlem2  10593  axpowndlem3  10594  axpowndlem4  10595  axregnd  10599  axinfndlem1  10600  axinfnd  10601  axacndlem4  10605  axacndlem5  10606  axacnd  10607  opabdm  31840  opabrn  31841  pm14.122b  43182  pm14.123b  43185
  Copyright terms: Public domain W3C validator