Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | exbidh 1870 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfbidf 2217 drex2 2442 rexbida 3251 rexeqf 3333 opabbid 5139 zfrepclf 5218 dfid3 5492 oprabbid 7340 axrepndlem1 10348 axrepndlem2 10349 axrepnd 10350 axpowndlem2 10354 axpowndlem3 10355 axpowndlem4 10356 axregnd 10360 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 opabdm 30951 opabrn 30952 pm14.122b 42041 pm14.123b 42044 |
Copyright terms: Public domain | W3C validator |