Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2192 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | exbidh 1874 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1786 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-ex 1787 df-nf 1791 |
This theorem is referenced by: nfbidf 2221 drex2 2444 rexbida 3249 rexeqf 3332 opabbid 5144 zfrepclf 5222 dfid3 5492 oprabbid 7332 axrepndlem1 10347 axrepndlem2 10348 axrepnd 10349 axpowndlem2 10353 axpowndlem3 10354 axpowndlem4 10355 axregnd 10359 axinfndlem1 10360 axinfnd 10361 axacndlem4 10365 axacndlem5 10366 axacnd 10367 opabdm 30945 opabrn 30946 pm14.122b 42009 pm14.123b 42012 |
Copyright terms: Public domain | W3C validator |