| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | exbidh 1867 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 drex2 2441 rexbida 3250 rexeqfOLD 3333 opabbid 5175 zfrepclf 5249 dfid3 5539 oprabbid 7457 axrepndlem1 10552 axrepndlem2 10553 axrepnd 10554 axpowndlem2 10558 axpowndlem3 10559 axpowndlem4 10560 axregnd 10564 axinfndlem1 10565 axinfnd 10566 axacndlem4 10570 axacndlem5 10571 axacnd 10572 opabdm 32546 opabrn 32547 pm14.122b 44419 pm14.123b 44422 modelaxreplem3 44977 |
| Copyright terms: Public domain | W3C validator |