MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbid Structured version   Visualization version   GIF version

Theorem exbid 2220
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbid (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2192 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3exbidh 1874 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1786  wnf 1790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 206  df-ex 1787  df-nf 1791
This theorem is referenced by:  nfbidf  2221  drex2  2444  rexbida  3249  rexeqf  3332  opabbid  5144  zfrepclf  5222  dfid3  5492  oprabbid  7332  axrepndlem1  10347  axrepndlem2  10348  axrepnd  10349  axpowndlem2  10353  axpowndlem3  10354  axpowndlem4  10355  axregnd  10359  axinfndlem1  10360  axinfnd  10361  axacndlem4  10365  axacndlem5  10366  axacnd  10367  opabdm  30945  opabrn  30946  pm14.122b  42009  pm14.123b  42012
  Copyright terms: Public domain W3C validator