| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2198 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | exbidh 1868 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfbidf 2227 drex2 2442 rexbida 3244 rexeqfOLD 3323 opabbid 5154 zfrepclf 5227 dfid3 5512 oprabbid 7411 axrepndlem1 10483 axrepndlem2 10484 axrepnd 10485 axpowndlem2 10489 axpowndlem3 10490 axpowndlem4 10491 axregnd 10495 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 opabdm 32594 opabrn 32595 pm14.122b 44515 pm14.123b 44518 modelaxreplem3 45072 |
| Copyright terms: Public domain | W3C validator |