| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbid | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | exbidh 1867 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 drex2 2440 rexbida 3249 rexeqfOLD 3331 opabbid 5172 zfrepclf 5246 dfid3 5536 oprabbid 7454 axrepndlem1 10545 axrepndlem2 10546 axrepnd 10547 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axregnd 10557 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 opabdm 32539 opabrn 32540 pm14.122b 44412 pm14.123b 44415 modelaxreplem3 44970 |
| Copyright terms: Public domain | W3C validator |