MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbid Structured version   Visualization version   GIF version

Theorem exbid 2224
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exbid (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem exbid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3exbidh 1867 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfbidf  2225  drex2  2447  rexbida  3258  rexeqfOLD  3341  opabbid  5189  zfrepclf  5266  dfid3  5556  oprabbid  7477  axrepndlem1  10611  axrepndlem2  10612  axrepnd  10613  axpowndlem2  10617  axpowndlem3  10618  axpowndlem4  10619  axregnd  10623  axinfndlem1  10624  axinfnd  10625  axacndlem4  10629  axacndlem5  10630  axacnd  10631  opabdm  32596  opabrn  32597  pm14.122b  44414  pm14.123b  44417  modelaxreplem3  44972
  Copyright terms: Public domain W3C validator