MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exel Structured version   Visualization version   GIF version

Theorem exel 5453
Description: There exist two sets, one a member of the other.

This theorem looks similar to el 5457, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1807, ax-6 1967, and ax-pr 5447. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5454. (Contributed by SN, 23-Dec-2024.)

Assertion
Ref Expression
exel 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5447 . 2 𝑦𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦)
2 ax6ev 1969 . . . 4 𝑥 𝑥 = 𝑧
3 pm2.07 901 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑧))
42, 3eximii 1835 . . 3 𝑥(𝑥 = 𝑧𝑥 = 𝑧)
5 exim 1832 . . 3 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → (∃𝑥(𝑥 = 𝑧𝑥 = 𝑧) → ∃𝑥 𝑥𝑦))
64, 5mpi 20 . 2 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
71, 6eximii 1835 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-6 1967  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778
This theorem is referenced by:  exexneq  5454
  Copyright terms: Public domain W3C validator