MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exel Structured version   Visualization version   GIF version

Theorem exel 5374
Description: There exist two sets, one a member of the other.

This theorem looks similar to el 5378, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1810, ax-6 1968, and ax-pr 5368. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5375. (Contributed by SN, 23-Dec-2024.)

Assertion
Ref Expression
exel 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5368 . 2 𝑦𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦)
2 ax6ev 1970 . . . 4 𝑥 𝑥 = 𝑧
3 pm2.07 902 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑧))
42, 3eximii 1838 . . 3 𝑥(𝑥 = 𝑧𝑥 = 𝑧)
5 exim 1835 . . 3 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → (∃𝑥(𝑥 = 𝑧𝑥 = 𝑧) → ∃𝑥 𝑥𝑦))
64, 5mpi 20 . 2 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
71, 6eximii 1838 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-6 1968  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781
This theorem is referenced by:  exexneq  5375
  Copyright terms: Public domain W3C validator