MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exel Structured version   Visualization version   GIF version

Theorem exel 5370
Description: There exist two sets, one a member of the other.

This theorem looks similar to el 5375, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1810, ax-6 1970, and ax-pr 5366. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5371. (Contributed by SN, 23-Dec-2024.)

Assertion
Ref Expression
exel 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5366 . 2 𝑦𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦)
2 ax6ev 1972 . . . 4 𝑥 𝑥 = 𝑧
3 pm2.07 900 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑧))
42, 3eximii 1838 . . 3 𝑥(𝑥 = 𝑧𝑥 = 𝑧)
5 exim 1835 . . 3 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → (∃𝑥(𝑥 = 𝑧𝑥 = 𝑧) → ∃𝑥 𝑥𝑦))
64, 5mpi 20 . 2 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
71, 6eximii 1838 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-6 1970  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1781
This theorem is referenced by:  exexneq  5371
  Copyright terms: Public domain W3C validator