MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exel Structured version   Visualization version   GIF version

Theorem exel 5431
Description: There exist two sets, one a member of the other.

This theorem looks similar to el 5435, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1804, ax-6 1964, and ax-pr 5425. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5432. (Contributed by SN, 23-Dec-2024.)

Assertion
Ref Expression
exel 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5425 . 2 𝑦𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦)
2 ax6ev 1966 . . . 4 𝑥 𝑥 = 𝑧
3 pm2.07 900 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑧))
42, 3eximii 1832 . . 3 𝑥(𝑥 = 𝑧𝑥 = 𝑧)
5 exim 1829 . . 3 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → (∃𝑥(𝑥 = 𝑧𝑥 = 𝑧) → ∃𝑥 𝑥𝑦))
64, 5mpi 20 . 2 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
71, 6eximii 1832 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  wal 1532  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-6 1964  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1775
This theorem is referenced by:  exexneq  5432
  Copyright terms: Public domain W3C validator