Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exel | Structured version Visualization version GIF version |
Description: There exist two sets, one
a member of the other.
This theorem looks similar to el 5375, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1810, ax-6 1970, and ax-pr 5366. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5371. (Contributed by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
exel | ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pr 5366 | . 2 ⊢ ∃𝑦∀𝑥((𝑥 = 𝑧 ∨ 𝑥 = 𝑧) → 𝑥 ∈ 𝑦) | |
2 | ax6ev 1972 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑧 | |
3 | pm2.07 900 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑧 ∨ 𝑥 = 𝑧)) | |
4 | 2, 3 | eximii 1838 | . . 3 ⊢ ∃𝑥(𝑥 = 𝑧 ∨ 𝑥 = 𝑧) |
5 | exim 1835 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑧 ∨ 𝑥 = 𝑧) → 𝑥 ∈ 𝑦) → (∃𝑥(𝑥 = 𝑧 ∨ 𝑥 = 𝑧) → ∃𝑥 𝑥 ∈ 𝑦)) | |
6 | 4, 5 | mpi 20 | . 2 ⊢ (∀𝑥((𝑥 = 𝑧 ∨ 𝑥 = 𝑧) → 𝑥 ∈ 𝑦) → ∃𝑥 𝑥 ∈ 𝑦) |
7 | 1, 6 | eximii 1838 | 1 ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∀wal 1538 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-6 1970 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 |
This theorem is referenced by: exexneq 5371 |
Copyright terms: Public domain | W3C validator |