MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exel Structured version   Visualization version   GIF version

Theorem exel 5365
Description: There exist two sets, one a member of the other.

This theorem looks similar to el 5370, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1809, ax-6 1969, and ax-pr 5361. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5366. (Contributed by SN, 23-Dec-2024.)

Assertion
Ref Expression
exel 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5361 . 2 𝑦𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦)
2 ax6ev 1971 . . . 4 𝑥 𝑥 = 𝑧
3 pm2.07 901 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑧))
42, 3eximii 1837 . . 3 𝑥(𝑥 = 𝑧𝑥 = 𝑧)
5 exim 1834 . . 3 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → (∃𝑥(𝑥 = 𝑧𝑥 = 𝑧) → ∃𝑥 𝑥𝑦))
64, 5mpi 20 . 2 (∀𝑥((𝑥 = 𝑧𝑥 = 𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
71, 6eximii 1837 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-6 1969  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1780
This theorem is referenced by:  exexneq  5366
  Copyright terms: Public domain W3C validator