| Metamath
Proof Explorer Theorem List (p. 55 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | axprOLD 5401* | Obsolete version of axpr 5397 as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Axiom | ax-pr 5402* | The Axiom of Pairing of ZF set theory. It was derived as Theorem axpr 5397 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 5403 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 5402. See zfpair 5391 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | vsnex 5404 | A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | snexg 5405 | A singleton built on a set is a set. Special case of snex 5406 which does not require ax-nul 5276 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5406 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 5406 | A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5353. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | prex 5407 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4743), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | exel 5408* |
There exist two sets, one a member of the other.
This theorem looks similar to el 5412, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1809, ax-6 1967, and ax-pr 5402. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5409. (Contributed by SN, 23-Dec-2024.) |
| ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
| Theorem | exexneq 5409* | There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2376. (Revised by BJ, 31-May-2019.) Avoid ax-8 2110. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5402 instead of ax-pow 5335. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5411. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | exneq 5410* |
Given any set (the "𝑦 " in the statement), there
exists a set not
equal to it.
The same statement without disjoint variable condition is false, since we do not have ∃𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2707, ax-sep 5266, or ax-pow 5335 nor auxiliary logical axiom schemes ax-10 2141 to ax-13 2376. See dtruALT 5358 for a shorter proof using more axioms, and dtruALT2 5340 for a proof using ax-pow 5335 instead of ax-pr 5402. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2376. (Revised by BJ, 31-May-2019.) Avoid ax-8 2110. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5402 instead of ax-pow 5335. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5411. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | dtru 5411* | Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2027. The same comments and revision history concerning axiom usage as in exneq 5410 apply. See dtruALT 5358 and dtruALT2 5340 for alternate proofs avoiding ax-pr 5402. (Contributed by NM, 7-Nov-2006.) Extract exneq 5410 as an intermediate result. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | el 5412* | Any set is an element of some other set. See elALT 5415 for a shorter proof using more axioms, and see elALT2 5339 for a proof that uses ax-9 2118 and ax-pow 5335 instead of ax-pr 5402. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5402 instead of ax-9 2118 and ax-pow 5335. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | sels 5413* | If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5415. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5266, ax-nul 5276, ax-pow 5335. (Revised by BTernaryTau, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | selsALT 5414* | Alternate proof of sels 5413, requiring ax-sep 5266 but not using el 5412 (which is proved from it as elALT 5415). (especially when the proof of el 5412 is inlined in sels 5413). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5415. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | elALT 5415* | Alternate proof of el 5412, shorter but requiring ax-sep 5266. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | dtruOLD 5416* | Obsolete version of dtru 5411 as of 1-Jan-2025. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2376. (Revised by BJ, 31-May-2019.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5402 instead of ax-pow 5335. (Revised by BTernaryTau, 3-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | snelpwg 5417 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5276. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | ||
| Theorem | snelpwi 5418 | If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpwiOLD 5419 | Obsolete version of snelpwi 5418 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpw 5420 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | prelpw 5421 | An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | ||
| Theorem | prelpwi 5422 | If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
| Theorem | rext 5423* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | sspwb 5424 | The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
| Theorem | unipw 5425 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| ⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
| Theorem | univ 5426 | The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| ⊢ ∪ V = V | ||
| Theorem | pwtr 5427 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
| Theorem | ssextss 5428* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
| Theorem | ssext 5429* | An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
| Theorem | nssss 5430* | Negation of subclass relationship. Compare nss 4023. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
| Theorem | pweqb 5431 | Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | intidg 5432* | The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5276. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) | ||
| Theorem | intidOLD 5433* | Obsolete version of intidg 5432 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} | ||
| Theorem | moabex 5434 | "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
| ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | rmorabex 5435 | Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | euabex 5436 | The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | nnullss 5437* | A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) | ||
| Theorem | exss 5438* | Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) | ||
| Theorem | opex 5439 | An ordered pair of classes is a set. Exercise 7 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵〉 ∈ V | ||
| Theorem | otex 5440 | An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V | ||
| Theorem | elopg 5441 | Characterization of the elements of an ordered pair. Closed form of elop 5442. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) | ||
| Theorem | elop 5442 | Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) | ||
| Theorem | opi1 5443 | One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opi2 5444 | One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opeluu 5445 | Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) | ||
| Theorem | op1stb 5446 | Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6216 to extract the second member, op1sta 6214 for an alternate version, and op1st 7994 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 | ||
| Theorem | brv 5447 | Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5779. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐴V𝐵 | ||
| Theorem | opnz 5448 | An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | opnzi 5449 | An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ≠ ∅ | ||
| Theorem | opth1 5450 | Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) | ||
| Theorem | opth 5451 | The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthg 5452 | Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opth1g 5453 | Equality of the first members of equal ordered pairs. Closed form of opth1 5450. (Contributed by AV, 14-Oct-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶)) | ||
| Theorem | opthg2 5454 | Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opth2 5455 | Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthneg 5456 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | ||
| Theorem | opthne 5457 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) | ||
| Theorem | otth2 5458 | Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | otth 5459 | Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | otthg 5460 | Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) | ||
| Theorem | otthne 5461 | Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | ||
| Theorem | eqvinop 5462* | A variable introduction law for ordered pairs. Analogue of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐶〉)) | ||
| Theorem | sbcop1 5463* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑦〉 / 𝑧]𝜑) | ||
| Theorem | sbcop 5464* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) | ||
| Theorem | copsexgw 5465* | Version of copsexg 5466 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by GG, 26-Jan-2024.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
| Theorem | copsexg 5466* | Substitution of class 𝐴 for ordered pair 〈𝑥, 𝑦〉. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker copsexgw 5465 when possible. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 25-Aug-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
| Theorem | copsex2t 5467* | Closed theorem form of copsex2g 5468. (Contributed by NM, 17-Feb-2013.) |
| ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex2g 5468* | Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) Use a similar proof to copsex4g 5470 to reduce axiom usage. (Revised by SN, 1-Sep-2024.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex2dv 5469* | Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | ||
| Theorem | copsex4g 5470* | An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑧, 𝑤〉) ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | 0nelop 5471 | A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ¬ ∅ ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opwo0id 5472 | An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.) |
| ⊢ 〈𝑋, 𝑌〉 = (〈𝑋, 𝑌〉 ∖ {∅}) | ||
| Theorem | opeqex 5473 | Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
| ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) | ||
| Theorem | oteqex2 5474 | Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
| ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) | ||
| Theorem | oteqex 5475 | Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (𝑅 ∈ V ∧ 𝑆 ∈ V ∧ 𝑇 ∈ V))) | ||
| Theorem | opcom 5476 | An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) | ||
| Theorem | moop2 5477* | "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 | ||
| Theorem | opeqsng 5478 | Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) | ||
| Theorem | opeqsn 5479 | Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) | ||
| Theorem | opeqpr 5480 | Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) | ||
| Theorem | snopeqop 5481 | Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({〈𝐴, 𝐵〉} = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ∧ 𝐶 = {𝐴})) | ||
| Theorem | propeqop 5482 | Equivalence for an ordered pair equal to a pair of ordered pairs. (Contributed by AV, 18-Sep-2020.) (Proof shortened by AV, 16-Jun-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = 〈𝐸, 𝐹〉 ↔ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) | ||
| Theorem | propssopi 5483 | If a pair of ordered pairs is a subset of an ordered pair, their first components are equal. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, 16-Jun-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐸 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ⊆ 〈𝐸, 𝐹〉 → 𝐴 = 𝐶) | ||
| Theorem | snopeqopsnid 5484 | Equivalence for an ordered pair of two identical singletons equal to a singleton of an ordered pair. (Contributed by AV, 24-Sep-2020.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {〈𝐴, 𝐴〉} = 〈{𝐴}, {𝐴}〉 | ||
| Theorem | mosubopt 5485* | "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.) |
| ⊢ (∀𝑦∀𝑧∃*𝑥𝜑 → ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑)) | ||
| Theorem | mosubop 5486* | "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.) |
| ⊢ ∃*𝑥𝜑 ⇒ ⊢ ∃*𝑥∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝜑) | ||
| Theorem | euop2 5487* | Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦(𝑥 = 〈𝐴, 𝑦〉 ∧ 𝜑) ↔ ∃!𝑦𝜑) | ||
| Theorem | euotd 5488* | Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → (𝜓 ↔ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶))) ⇒ ⊢ (𝜑 → ∃!𝑥∃𝑎∃𝑏∃𝑐(𝑥 = 〈𝑎, 𝑏, 𝑐〉 ∧ 𝜓)) | ||
| Theorem | opthwiener 5489 | Justification theorem for the ordered pair definition in Norbert Wiener, A simplification of the logic of relations, Proceedings of the Cambridge Philosophical Society, 1914, vol. 17, pp.387-390. It is also shown as a definition in [Enderton] p. 36 and as Exercise 4.8(b) of [Mendelson] p. 230. It is meaningful only for classes that exist as sets (i.e., are not proper classes). See df-op 4608 for other ordered pair definitions. (Contributed by NM, 28-Sep-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({{{𝐴}, ∅}, {{𝐵}}} = {{{𝐶}, ∅}, {{𝐷}}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | uniop 5490 | The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} | ||
| Theorem | uniopel 5491 | Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) | ||
| Theorem | opthhausdorff 5492 | Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: 〈𝐴, 𝐵〉H = {{𝐴, 𝑂}, {𝐵, 𝑇}}. Hausdorff used 1 and 2 instead of 𝑂 and 𝑇, but actually, any two different fixed sets will do (e.g., 𝑂 = ∅ and 𝑇 = {∅}, see 0nep0 5328). Furthermore, Hausdorff demanded that 𝑂 and 𝑇 are both different from 𝐴 as well as 𝐵, which is actually not necessary in full extent (𝐴 ≠ 𝑇 is not required). This definition is meaningful only for classes 𝐴 and 𝐵 that exist as sets (i.e., are not proper classes): If 𝐴 and 𝐶 were different proper classes (𝐴 ≠ 𝐶), then {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇} ↔ {{𝑂}, {𝐵, 𝑇}} = {{𝑂}, {𝐷, 𝑇} is true if 𝐵 = 𝐷, but (𝐴 = 𝐶 ∧ 𝐵 = 𝐷) would be false. See df-op 4608 for other ordered pair definitions. (Contributed by AV, 14-Jun-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐴 ≠ 𝑂 & ⊢ 𝐵 ≠ 𝑂 & ⊢ 𝐵 ≠ 𝑇 & ⊢ 𝑂 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝑂 ≠ 𝑇 ⇒ ⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthhausdorff0 5493 | Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: 〈𝐴, 𝐵〉H = {{𝐴, 𝑂}, {𝐵, 𝑇}}. Hausdorff used 1 and 2 instead of 𝑂 and 𝑇, but actually, any two different fixed sets will do (e.g., 𝑂 = ∅ and 𝑇 = {∅}, see 0nep0 5328). Furthermore, Hausdorff demanded that 𝑂 and 𝑇 are both different from 𝐴 as well as 𝐵, which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff 5492. See df-op 4608 for other ordered pair definitions. (Contributed by AV, 12-Jun-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑂 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝑂 ≠ 𝑇 ⇒ ⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | otsndisj 5494* | The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → Disj 𝑐 ∈ 𝑉 {〈𝐴, 𝐵, 𝑐〉}) | ||
| Theorem | otiunsndisj 5495* | The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| ⊢ (𝐵 ∈ 𝑋 → Disj 𝑎 ∈ 𝑉 ∪ 𝑐 ∈ (𝑊 ∖ {𝑎}){〈𝑎, 𝐵, 𝑐〉}) | ||
| Theorem | iunopeqop 5496* | Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ ∅ → (∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} = 〈𝐶, 𝐷〉 → ∃𝑧 𝐴 = {𝑧})) | ||
| Theorem | brsnop 5497 | Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | ||
| Theorem | brtp 5498 | A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V ⇒ ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷) ∨ (𝑋 = 𝐸 ∧ 𝑌 = 𝐹))) | ||
| Theorem | opabidw 5499* | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5500 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.) |
| ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | ||
| Theorem | opabid 5500 | The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker opabidw 5499 when possible. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) |
| ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |