| Metamath
Proof Explorer Theorem List (p. 55 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | reusv2lem4 5401* | Lemma for reusv2 5403. (Contributed by NM, 13-Dec-2012.) |
| ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | ||
| Theorem | reusv2lem5 5402* | Lemma for reusv2 5403. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | reusv2 5403* | Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦 ∈ 𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝐶 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv3i 5404* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
| Theorem | reusv3 5405* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 5397 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | eusv4 5406* | Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | alxfr 5407* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | ralxfrd 5408* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd 5409* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr2d 5410* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfr2d 5411* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfrd2 5412* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5408. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd2 5413* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 5409. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr 5414* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | ralxfrALT 5415* | Alternate proof of ralxfr 5414 which does not use ralxfrd 5408. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rexxfr 5416* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rabxfrd 5417* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) | ||
| Theorem | rabxfr 5418* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) | ||
| Theorem | reuhypd 5419* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7422. (Contributed by NM, 16-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | reuhyp 5420* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3758. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | zfpair 5421 |
The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of
[TakeutiZaring] p. 15. In some
textbooks this is stated as a separate
axiom; here we show it is redundant since it can be derived from the
other axioms.
This theorem should not be referenced by any proof other than axprALT 5422. Instead, use zfpair2 5433 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | axprALT 5422* | Alternate proof of axpr 5427. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem1 5423* | Lemma for axpr 5427. There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem2 5424* | Lemma for axpr 5427. There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ∈ 𝑦 ∀𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem3 5425* | Lemma for axpr 5427. Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4 5426* | Lemma for axpr 5427. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑠∀𝑛𝜑 & ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) & ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) ⇒ ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) | ||
| Theorem | axpr 5427* |
Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 5432 below so that the uses of the Axiom of Pairing can be more easily identified. For a shorter proof using ax-ext 2708, see axprALT 5422. (Contributed by NM, 14-Nov-2006.) Remove dependency on ax-ext 2708. (Revised by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) Use ax-pr 5432 instead. (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem3OLD 5428* | Obsolete version of axprlem3 5425 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4OLD 5429* | Obsolete version of axprlem4 5426 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem5OLD 5430* | Obsolete version of axprlem4 5426 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprOLD 5431* | Obsolete version of axpr 5427 as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Axiom | ax-pr 5432* | The Axiom of Pairing of ZF set theory. It was derived as Theorem axpr 5427 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 5433 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 5432. See zfpair 5421 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | vsnex 5434 | A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | snexg 5435 | A singleton built on a set is a set. Special case of snex 5436 which does not require ax-nul 5306 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5436 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 5436 | A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5383. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | prex 5437 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4767), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | exel 5438* |
There exist two sets, one a member of the other.
This theorem looks similar to el 5442, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1809, ax-6 1967, and ax-pr 5432. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5439. (Contributed by SN, 23-Dec-2024.) |
| ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
| Theorem | exexneq 5439* | There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2377. (Revised by BJ, 31-May-2019.) Avoid ax-8 2110. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5432 instead of ax-pow 5365. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5441. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | exneq 5440* |
Given any set (the "𝑦 " in the statement), there
exists a set not
equal to it.
The same statement without disjoint variable condition is false, since we do not have ∃𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2708, ax-sep 5296, or ax-pow 5365 nor auxiliary logical axiom schemes ax-10 2141 to ax-13 2377. See dtruALT 5388 for a shorter proof using more axioms, and dtruALT2 5370 for a proof using ax-pow 5365 instead of ax-pr 5432. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2377. (Revised by BJ, 31-May-2019.) Avoid ax-8 2110. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5432 instead of ax-pow 5365. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5441. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | dtru 5441* | Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2027. The same comments and revision history concerning axiom usage as in exneq 5440 apply. See dtruALT 5388 and dtruALT2 5370 for alternate proofs avoiding ax-pr 5432. (Contributed by NM, 7-Nov-2006.) Extract exneq 5440 as an intermediate result. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | el 5442* | Any set is an element of some other set. See elALT 5445 for a shorter proof using more axioms, and see elALT2 5369 for a proof that uses ax-9 2118 and ax-pow 5365 instead of ax-pr 5432. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5432 instead of ax-9 2118 and ax-pow 5365. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | sels 5443* | If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5445. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5296, ax-nul 5306, ax-pow 5365. (Revised by BTernaryTau, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | selsALT 5444* | Alternate proof of sels 5443, requiring ax-sep 5296 but not using el 5442 (which is proved from it as elALT 5445). (especially when the proof of el 5442 is inlined in sels 5443). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5445. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | elALT 5445* | Alternate proof of el 5442, shorter but requiring ax-sep 5296. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | dtruOLD 5446* | Obsolete version of dtru 5441 as of 1-Jan-2025. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2377. (Revised by BJ, 31-May-2019.) Avoid ax-12 2177. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5432 instead of ax-pow 5365. (Revised by BTernaryTau, 3-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | snelpwg 5447 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5306. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | ||
| Theorem | snelpwi 5448 | If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpwiOLD 5449 | Obsolete version of snelpwi 5448 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpw 5450 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | prelpw 5451 | An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | ||
| Theorem | prelpwi 5452 | If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
| Theorem | rext 5453* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | sspwb 5454 | The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
| Theorem | unipw 5455 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| ⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
| Theorem | univ 5456 | The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| ⊢ ∪ V = V | ||
| Theorem | pwtr 5457 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
| Theorem | ssextss 5458* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
| Theorem | ssext 5459* | An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
| Theorem | nssss 5460* | Negation of subclass relationship. Compare nss 4048. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
| Theorem | pweqb 5461 | Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | ||
| Theorem | intidg 5462* | The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5306. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) | ||
| Theorem | intidOLD 5463* | Obsolete version of intidg 5462 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} | ||
| Theorem | moabex 5464 | "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
| ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | rmorabex 5465 | Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | euabex 5466 | The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | nnullss 5467* | A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) | ||
| Theorem | exss 5468* | Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) | ||
| Theorem | opex 5469 | An ordered pair of classes is a set. Exercise 7 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵〉 ∈ V | ||
| Theorem | otex 5470 | An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
| ⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V | ||
| Theorem | elopg 5471 | Characterization of the elements of an ordered pair. Closed form of elop 5472. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) | ||
| Theorem | elop 5472 | Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) | ||
| Theorem | opi1 5473 | One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opi2 5474 | One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | ||
| Theorem | opeluu 5475 | Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) | ||
| Theorem | op1stb 5476 | Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6247 to extract the second member, op1sta 6245 for an alternate version, and op1st 8022 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 | ||
| Theorem | brv 5477 | Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5810. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐴V𝐵 | ||
| Theorem | opnz 5478 | An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | opnzi 5479 | An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ≠ ∅ | ||
| Theorem | opth1 5480 | Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) | ||
| Theorem | opth 5481 | The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthg 5482 | Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opth1g 5483 | Equality of the first members of equal ordered pairs. Closed form of opth1 5480. (Contributed by AV, 14-Oct-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶)) | ||
| Theorem | opthg2 5484 | Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | opth2 5485 | Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | opthneg 5486 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | ||
| Theorem | opthne 5487 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) | ||
| Theorem | otth2 5488 | Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | otth 5489 | Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
| Theorem | otthg 5490 | Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) | ||
| Theorem | otthne 5491 | Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | ||
| Theorem | eqvinop 5492* | A variable introduction law for ordered pairs. Analogue of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐶〉)) | ||
| Theorem | sbcop1 5493* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑦〉 / 𝑧]𝜑) | ||
| Theorem | sbcop 5494* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) | ||
| Theorem | copsexgw 5495* | Version of copsexg 5496 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by GG, 26-Jan-2024.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
| Theorem | copsexg 5496* | Substitution of class 𝐴 for ordered pair 〈𝑥, 𝑦〉. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker copsexgw 5495 when possible. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 25-Aug-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | ||
| Theorem | copsex2t 5497* | Closed theorem form of copsex2g 5498. (Contributed by NM, 17-Feb-2013.) |
| ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex2g 5498* | Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) Use a similar proof to copsex4g 5500 to reduce axiom usage. (Revised by SN, 1-Sep-2024.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) | ||
| Theorem | copsex2dv 5499* | Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | ||
| Theorem | copsex4g 5500* | An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.) |
| ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆)) → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑧, 𝑤〉) ∧ 𝜑) ↔ 𝜓)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |