![]() |
Metamath
Proof Explorer Theorem List (p. 55 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | eusv2 5401* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | ||
Theorem | reusv1 5402* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
Theorem | reusv2lem1 5403* | Lemma for reusv2 5408. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | reusv2lem2 5404* | Lemma for reusv2 5408. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
⊢ (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
Theorem | reusv2lem3 5405* | Lemma for reusv2 5408. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
Theorem | reusv2lem4 5406* | Lemma for reusv2 5408. (Contributed by NM, 13-Dec-2012.) |
⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | ||
Theorem | reusv2lem5 5407* | Lemma for reusv2 5408. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ ((∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
Theorem | reusv2 5408* | Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦 ∈ 𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝐶 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
Theorem | reusv3i 5409* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
Theorem | reusv3 5410* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 5402 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
Theorem | eusv4 5411* | Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
Theorem | alxfr 5412* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | ralxfrd 5413* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | rexxfrd 5414* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | ralxfr2d 5415* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | rexxfr2d 5416* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | ralxfrd2 5417* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5413. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | rexxfrd2 5418* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 5414. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
Theorem | ralxfr 5419* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
Theorem | ralxfrALT 5420* | Alternate proof of ralxfr 5419 which does not use ralxfrd 5413. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
Theorem | rexxfr 5421* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) | ||
Theorem | rabxfrd 5422* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) | ||
Theorem | rabxfr 5423* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) | ||
Theorem | reuhypd 5424* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7421. (Contributed by NM, 16-Jan-2012.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
Theorem | reuhyp 5425* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3760. (Contributed by NM, 15-Nov-2004.) |
⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
Theorem | zfpair 5426 |
The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of
[TakeutiZaring] p. 15. In some
textbooks this is stated as a separate
axiom; here we show it is redundant since it can be derived from the
other axioms.
This theorem should not be referenced by any proof other than axprALT 5427. Instead, use zfpair2 5438 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
⊢ {𝑥, 𝑦} ∈ V | ||
Theorem | axprALT 5427* | Alternate proof of axpr 5432. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
Theorem | axprlem1 5428* | Lemma for axpr 5432. There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | ||
Theorem | axprlem2 5429* | Lemma for axpr 5432. There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
⊢ ∃𝑥∀𝑦(∀𝑧 ∈ 𝑦 ∀𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥) | ||
Theorem | axprlem3 5430* | Lemma for axpr 5432. Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
Theorem | axprlem4 5431* | Lemma for axpr 5432. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
⊢ ∃𝑠∀𝑛𝜑 & ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) & ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) ⇒ ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) | ||
Theorem | axpr 5432* |
Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 5437 below so that the uses of the Axiom of Pairing can be more easily identified. For a shorter proof using ax-ext 2705, see axprALT 5427. (Contributed by NM, 14-Nov-2006.) Remove dependency on ax-ext 2705. (Revised by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) Use ax-pr 5437 instead. (New usage is discouraged.) |
⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
Theorem | axprlem3OLD 5433* | Obsolete version of axprlem3 5430 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
Theorem | axprlem4OLD 5434* | Obsolete version of axprlem4 5431 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
Theorem | axprlem5OLD 5435* | Obsolete version of axprlem4 5431 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
Theorem | axprOLD 5436* | Obsolete version of axpr 5432 as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
Axiom | ax-pr 5437* | The Axiom of Pairing of ZF set theory. It was derived as Theorem axpr 5432 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
Theorem | zfpair2 5438 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 5437. See zfpair 5426 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
⊢ {𝑥, 𝑦} ∈ V | ||
Theorem | vsnex 5439 | A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
⊢ {𝑥} ∈ V | ||
Theorem | snexg 5440 | A singleton built on a set is a set. Special case of snex 5441 which does not require ax-nul 5311 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5441 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
Theorem | snex 5441 | A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5388. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) |
⊢ {𝐴} ∈ V | ||
Theorem | prex 5442 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4771), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
⊢ {𝐴, 𝐵} ∈ V | ||
Theorem | exel 5443* |
There exist two sets, one a member of the other.
This theorem looks similar to el 5447, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1805, ax-6 1964, and ax-pr 5437. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5444. (Contributed by SN, 23-Dec-2024.) |
⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
Theorem | exexneq 5444* | There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2374. (Revised by BJ, 31-May-2019.) Avoid ax-8 2107. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2174. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5437 instead of ax-pow 5370. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5446. (Revised by BJ, 2-Jan-2025.) |
⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
Theorem | exneq 5445* |
Given any set (the "𝑦 " in the statement), there
exists a set not
equal to it.
The same statement without disjoint variable condition is false, since we do not have ∃𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2705, ax-sep 5301, or ax-pow 5370 nor auxiliary logical axiom schemes ax-10 2138 to ax-13 2374. See dtruALT 5393 for a shorter proof using more axioms, and dtruALT2 5375 for a proof using ax-pow 5370 instead of ax-pr 5437. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2374. (Revised by BJ, 31-May-2019.) Avoid ax-8 2107. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2174. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5437 instead of ax-pow 5370. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5446. (Revised by BJ, 2-Jan-2025.) |
⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
Theorem | dtru 5446* | Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2024. The same comments and revision history concerning axiom usage as in exneq 5445 apply. See dtruALT 5393 and dtruALT2 5375 for alternate proofs avoiding ax-pr 5437. (Contributed by NM, 7-Nov-2006.) Extract exneq 5445 as an intermediate result. (Revised by BJ, 2-Jan-2025.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | el 5447* | Any set is an element of some other set. See elALT 5450 for a shorter proof using more axioms, and see elALT2 5374 for a proof that uses ax-9 2115 and ax-pow 5370 instead of ax-pr 5437. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5437 instead of ax-9 2115 and ax-pow 5370. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
Theorem | sels 5448* | If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5450. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5301, ax-nul 5311, ax-pow 5370. (Revised by BTernaryTau, 15-Jan-2025.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
Theorem | selsALT 5449* | Alternate proof of sels 5448, requiring ax-sep 5301 but not using el 5447 (which is proved from it as elALT 5450). (especially when the proof of el 5447 is inlined in sels 5448). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5450. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
Theorem | elALT 5450* | Alternate proof of el 5447, shorter but requiring ax-sep 5301. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
Theorem | dtruOLD 5451* | Obsolete version of dtru 5446 as of 01-Jan-2025. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2374. (Revised by BJ, 31-May-2019.) Avoid ax-12 2174. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5437 instead of ax-pow 5370. (Revised by BTernaryTau, 3-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | snelpwg 5452 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5311. (Revised by BJ, 17-Jan-2025.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | ||
Theorem | snelpwi 5453 | If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
Theorem | snelpwiOLD 5454 | Obsolete version of snelpwi 5453 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
Theorem | snelpw 5455 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
Theorem | prelpw 5456 | An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | ||
Theorem | prelpwi 5457 | If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
Theorem | rext 5458* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
Theorem | sspwb 5459 | The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
Theorem | unipw 5460 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
Theorem | univ 5461 | The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
⊢ ∪ V = V | ||
Theorem | pwtr 5462 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
Theorem | ssextss 5463* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
Theorem | ssext 5464* | An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | ||
Theorem | nssss 5465* | Negation of subclass relationship. Compare nss 4059. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
Theorem | pweqb 5466 | Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) | ||
Theorem | intidg 5467* | The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5311. (Revised by BJ, 17-Jan-2025.) |
⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) | ||
Theorem | intidOLD 5468* | Obsolete version of intidg 5467 as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴} | ||
Theorem | moabex 5469 | "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
Theorem | rmorabex 5470 | Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.) |
⊢ (∃*𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | euabex 5471 | The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | ||
Theorem | nnullss 5472* | A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) | ||
Theorem | exss 5473* | Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) | ||
Theorem | opex 5474 | An ordered pair of classes is a set. Exercise 7 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 〈𝐴, 𝐵〉 ∈ V | ||
Theorem | otex 5475 | An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.) |
⊢ 〈𝐴, 𝐵, 𝐶〉 ∈ V | ||
Theorem | elopg 5476 | Characterization of the elements of an ordered pair. Closed form of elop 5477. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) | ||
Theorem | elop 5477 | Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) | ||
Theorem | opi1 5478 | One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 | ||
Theorem | opi2 5479 | One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | ||
Theorem | opeluu 5480 | Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) | ||
Theorem | op1stb 5481 | Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6248 to extract the second member, op1sta 6246 for an alternate version, and op1st 8020 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 | ||
Theorem | brv 5482 | Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5812. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴V𝐵 | ||
Theorem | opnz 5483 | An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | opnzi 5484 | An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 ≠ ∅ | ||
Theorem | opth1 5485 | Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) | ||
Theorem | opth 5486 | The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | opthg 5487 | Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | opth1g 5488 | Equality of the first members of equal ordered pairs. Closed form of opth1 5485. (Contributed by AV, 14-Oct-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶)) | ||
Theorem | opthg2 5489 | Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | opth2 5490 | Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | opthneg 5491 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷))) | ||
Theorem | opthne 5492 | Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ≠ 〈𝐶, 𝐷〉 ↔ (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷)) | ||
Theorem | otth2 5493 | Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
Theorem | otth 5494 | Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝑅〉 = 〈𝐶, 𝐷, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) | ||
Theorem | otthg 5495 | Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) | ||
Theorem | otthne 5496 | Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵, 𝐶〉 ≠ 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐸 ∨ 𝐶 ≠ 𝐹)) | ||
Theorem | eqvinop 5497* | A variable introduction law for ordered pairs. Analogue of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 = 〈𝐵, 𝐶〉)) | ||
Theorem | sbcop1 5498* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023.) |
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑦〉 / 𝑧]𝜑) | ||
Theorem | sbcop 5499* | The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023.) |
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) | ||
Theorem | copsexgw 5500* | Version of copsexg 5501 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by GG, 26-Jan-2024.) |
⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |