MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el Structured version   Visualization version   GIF version

Theorem el 5400
Description: Any set is an element of some other set. See elALT 5403 for a shorter proof using more axioms, and see elALT2 5327 for a proof that uses ax-9 2119 and ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5390 instead of ax-9 2119 and ax-pow 5323. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
el 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem el
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5390 . 2 𝑦𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦)
2 pm4.25 905 . . . . . 6 (𝑧 = 𝑥 ↔ (𝑧 = 𝑥𝑧 = 𝑥))
32imbi1i 349 . . . . 5 ((𝑧 = 𝑥𝑧𝑦) ↔ ((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦))
43albii 1819 . . . 4 (∀𝑧(𝑧 = 𝑥𝑧𝑦) ↔ ∀𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦))
5 elequ1 2116 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
65equsalvw 2004 . . . 4 (∀𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
74, 6bitr3i 277 . . 3 (∀𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦) ↔ 𝑥𝑦)
87exbii 1848 . 2 (∃𝑦𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦) ↔ ∃𝑦 𝑥𝑦)
91, 8mpbi 230 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780
This theorem is referenced by:  sels  5401  dtruOLD  5404  dmep  5890  axpownd  10561  zfcndinf  10578  distel  35798
  Copyright terms: Public domain W3C validator