Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > el | Structured version Visualization version GIF version |
Description: Every set is an element of some other set. See elALT 5358 for a shorter proof using more axioms, and see elALT2 5292 for a proof that uses ax-9 2116 and ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Avoid ax-9 2116, ax-pow 5288. (Revised by BTernaryTau, 2-Dec-2024.) |
Ref | Expression |
---|---|
el | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pr 5352 | . 2 ⊢ ∃𝑦∀𝑧((𝑧 = 𝑥 ∨ 𝑧 = 𝑥) → 𝑧 ∈ 𝑦) | |
2 | pm4.25 903 | . . . . . 6 ⊢ (𝑧 = 𝑥 ↔ (𝑧 = 𝑥 ∨ 𝑧 = 𝑥)) | |
3 | 2 | imbi1i 350 | . . . . 5 ⊢ ((𝑧 = 𝑥 → 𝑧 ∈ 𝑦) ↔ ((𝑧 = 𝑥 ∨ 𝑧 = 𝑥) → 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1822 | . . . 4 ⊢ (∀𝑧(𝑧 = 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧((𝑧 = 𝑥 ∨ 𝑧 = 𝑥) → 𝑧 ∈ 𝑦)) |
5 | elequ1 2113 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
6 | 5 | equsalvw 2007 | . . . 4 ⊢ (∀𝑧(𝑧 = 𝑥 → 𝑧 ∈ 𝑦) ↔ 𝑥 ∈ 𝑦) |
7 | 4, 6 | bitr3i 276 | . . 3 ⊢ (∀𝑧((𝑧 = 𝑥 ∨ 𝑧 = 𝑥) → 𝑧 ∈ 𝑦) ↔ 𝑥 ∈ 𝑦) |
8 | 7 | exbii 1850 | . 2 ⊢ (∃𝑦∀𝑧((𝑧 = 𝑥 ∨ 𝑧 = 𝑥) → 𝑧 ∈ 𝑦) ↔ ∃𝑦 𝑥 ∈ 𝑦) |
9 | 1, 8 | mpbi 229 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 |
This theorem is referenced by: dtru 5359 dmep 5832 domepOLD 5833 axpownd 10357 zfcndinf 10374 distel 33779 bj-dtru 34999 |
Copyright terms: Public domain | W3C validator |