MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el Structured version   Visualization version   GIF version

Theorem el 5357
Description: Every set is an element of some other set. See elALT 5358 for a shorter proof using more axioms, and see elALT2 5292 for a proof that uses ax-9 2116 and ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Avoid ax-9 2116, ax-pow 5288. (Revised by BTernaryTau, 2-Dec-2024.)
Assertion
Ref Expression
el 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem el
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax-pr 5352 . 2 𝑦𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦)
2 pm4.25 903 . . . . . 6 (𝑧 = 𝑥 ↔ (𝑧 = 𝑥𝑧 = 𝑥))
32imbi1i 350 . . . . 5 ((𝑧 = 𝑥𝑧𝑦) ↔ ((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦))
43albii 1822 . . . 4 (∀𝑧(𝑧 = 𝑥𝑧𝑦) ↔ ∀𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦))
5 elequ1 2113 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
65equsalvw 2007 . . . 4 (∀𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
74, 6bitr3i 276 . . 3 (∀𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦) ↔ 𝑥𝑦)
87exbii 1850 . 2 (∃𝑦𝑧((𝑧 = 𝑥𝑧 = 𝑥) → 𝑧𝑦) ↔ ∃𝑦 𝑥𝑦)
91, 8mpbi 229 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783
This theorem is referenced by:  dtru  5359  dmep  5832  domepOLD  5833  axpownd  10357  zfcndinf  10374  distel  33779  bj-dtru  34999
  Copyright terms: Public domain W3C validator