Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exellimddv | Structured version Visualization version GIF version |
Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim 35442 for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
exellimddv.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
exellimddv.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
exellimddv | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exellimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
2 | exellimddv.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 2 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
4 | exellim 35442 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) → 𝜓) | |
5 | 1, 3, 4 | syl2anc 583 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: topdifinffinlem 35445 |
Copyright terms: Public domain | W3C validator |