Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinfindis | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinfindis | ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥 𝐴 ∈ Fin | |
2 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
3 | nfrab1 3302 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
4 | 2, 3 | nfcxfr 2917 | . 2 ⊢ Ⅎ𝑥𝑇 |
5 | nfcv 2919 | . 2 ⊢ Ⅎ𝑥{∅, 𝐴} | |
6 | 0elpw 5224 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐴 | |
7 | eleq1a 2847 | . . . . . 6 ⊢ (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) |
9 | pwidg 4516 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) | |
10 | eleq1a 2847 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
12 | 8, 11 | jaod 856 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | pm4.71rd 566 | . . 3 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
14 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 14 | elpr 4545 | . . . 4 ⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
17 | 2 | rabeq2i 3400 | . . . 4 ⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
18 | diffi 8786 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑥) ∈ Fin) | |
19 | biortn 935 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
21 | 20 | anbi2d 631 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))) |
22 | 17, 21 | bitr4id 293 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
23 | 13, 16, 22 | 3bitr4rd 315 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ {∅, 𝐴})) |
24 | 1, 4, 5, 23 | eqrd 3911 | 1 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 {crab 3074 ∖ cdif 3855 ∅c0 4225 𝒫 cpw 4494 {cpr 4524 Fincfn 8527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1o 8112 df-en 8528 df-fin 8531 |
This theorem is referenced by: topdifinf 35046 |
Copyright terms: Public domain | W3C validator |