Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfindis Structured version   Visualization version   GIF version

Theorem topdifinfindis 36815
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinfindis (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem topdifinfindis
StepHypRef Expression
1 nfv 1910 . 2 𝑥 𝐴 ∈ Fin
2 topdifinf.t . . 3 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
3 nfrab1 3446 . . 3 𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
42, 3nfcxfr 2896 . 2 𝑥𝑇
5 nfcv 2898 . 2 𝑥{∅, 𝐴}
6 0elpw 5350 . . . . . 6 ∅ ∈ 𝒫 𝐴
7 eleq1a 2823 . . . . . 6 (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴))
86, 7mp1i 13 . . . . 5 (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴))
9 pwidg 4618 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
10 eleq1a 2823 . . . . . 6 (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴))
119, 10syl 17 . . . . 5 (𝐴 ∈ Fin → (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴))
128, 11jaod 858 . . . 4 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴))
1312pm4.71rd 562 . . 3 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
14 vex 3473 . . . . 5 𝑥 ∈ V
1514elpr 4647 . . . 4 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
1615a1i 11 . . 3 (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
172reqabi 3449 . . . 4 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
18 diffi 9197 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin)
19 biortn 936 . . . . . 6 ((𝐴𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2018, 19syl 17 . . . . 5 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2120anbi2d 628 . . . 4 (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))))
2217, 21bitr4id 290 . . 3 (𝐴 ∈ Fin → (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2313, 16, 223bitr4rd 312 . 2 (𝐴 ∈ Fin → (𝑥𝑇𝑥 ∈ {∅, 𝐴}))
241, 4, 5, 23eqrd 3997 1 (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  {crab 3427  cdif 3941  c0 4318  𝒫 cpw 4598  {cpr 4626  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-en 8958  df-fin 8961
This theorem is referenced by:  topdifinf  36818
  Copyright terms: Public domain W3C validator