| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinfindis | Structured version Visualization version GIF version | ||
| Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| Ref | Expression |
|---|---|
| topdifinfindis | ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥 𝐴 ∈ Fin | |
| 2 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 3 | nfrab1 3436 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 4 | 2, 3 | nfcxfr 2896 | . 2 ⊢ Ⅎ𝑥𝑇 |
| 5 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥{∅, 𝐴} | |
| 6 | 0elpw 5326 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 7 | eleq1a 2829 | . . . . . 6 ⊢ (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) | |
| 8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | pwidg 4595 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) | |
| 10 | eleq1a 2829 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 12 | 8, 11 | jaod 859 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | 12 | pm4.71rd 562 | . . 3 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 14 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 15 | 14 | elpr 4626 | . . . 4 ⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
| 17 | 2 | reqabi 3439 | . . . 4 ⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 18 | diffi 9189 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑥) ∈ Fin) | |
| 19 | biortn 937 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 21 | 20 | anbi2d 630 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))) |
| 22 | 17, 21 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 23 | 13, 16, 22 | 3bitr4rd 312 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ {∅, 𝐴})) |
| 24 | 1, 4, 5, 23 | eqrd 3978 | 1 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {crab 3415 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 {cpr 4603 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 |
| This theorem is referenced by: topdifinf 37367 |
| Copyright terms: Public domain | W3C validator |