Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfindis Structured version   Visualization version   GIF version

Theorem topdifinfindis 34496
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinfindis (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem topdifinfindis
StepHypRef Expression
1 nfv 1908 . 2 𝑥 𝐴 ∈ Fin
2 topdifinf.t . . 3 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
3 nfrab1 3390 . . 3 𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
42, 3nfcxfr 2980 . 2 𝑥𝑇
5 nfcv 2982 . 2 𝑥{∅, 𝐴}
6 0elpw 5253 . . . . . 6 ∅ ∈ 𝒫 𝐴
7 eleq1a 2913 . . . . . 6 (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴))
86, 7mp1i 13 . . . . 5 (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴))
9 pwidg 4559 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
10 eleq1a 2913 . . . . . 6 (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴))
119, 10syl 17 . . . . 5 (𝐴 ∈ Fin → (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴))
128, 11jaod 855 . . . 4 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴))
1312pm4.71rd 563 . . 3 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
14 vex 3503 . . . . 5 𝑥 ∈ V
1514elpr 4587 . . . 4 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
1615a1i 11 . . 3 (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
17 diffi 8739 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝑥) ∈ Fin)
18 biortn 933 . . . . . 6 ((𝐴𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
1917, 18syl 17 . . . . 5 (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2019anbi2d 628 . . . 4 (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))))
212rabeq2i 3493 . . . 4 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2220, 21syl6rbbr 291 . . 3 (𝐴 ∈ Fin → (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))
2313, 16, 223bitr4rd 313 . 2 (𝐴 ∈ Fin → (𝑥𝑇𝑥 ∈ {∅, 𝐴}))
241, 4, 5, 23eqrd 3990 1 (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2107  {crab 3147  cdif 3937  c0 4295  𝒫 cpw 4542  {cpr 4566  Fincfn 8498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-om 7569  df-er 8279  df-en 8499  df-fin 8502
This theorem is referenced by:  topdifinf  34499
  Copyright terms: Public domain W3C validator