| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinfindis | Structured version Visualization version GIF version | ||
| Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| Ref | Expression |
|---|---|
| topdifinfindis | ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥 𝐴 ∈ Fin | |
| 2 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 3 | nfrab1 3426 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 4 | 2, 3 | nfcxfr 2889 | . 2 ⊢ Ⅎ𝑥𝑇 |
| 5 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥{∅, 𝐴} | |
| 6 | 0elpw 5311 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 7 | eleq1a 2823 | . . . . . 6 ⊢ (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) | |
| 8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | pwidg 4583 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) | |
| 10 | eleq1a 2823 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
| 12 | 8, 11 | jaod 859 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)) |
| 13 | 12 | pm4.71rd 562 | . . 3 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 14 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 15 | 14 | elpr 4614 | . . . 4 ⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
| 17 | 2 | reqabi 3429 | . . . 4 ⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 18 | diffi 9139 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑥) ∈ Fin) | |
| 19 | biortn 937 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 21 | 20 | anbi2d 630 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))) |
| 22 | 17, 21 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
| 23 | 13, 16, 22 | 3bitr4rd 312 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ {∅, 𝐴})) |
| 24 | 1, 4, 5, 23 | eqrd 3966 | 1 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {cpr 4591 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 |
| This theorem is referenced by: topdifinf 37337 |
| Copyright terms: Public domain | W3C validator |