![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinfindis | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is the trivial topology when 𝐴 is finite. (Contributed by ML, 14-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinfindis | ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑥 𝐴 ∈ Fin | |
2 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
3 | nfrab1 3446 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
4 | 2, 3 | nfcxfr 2896 | . 2 ⊢ Ⅎ𝑥𝑇 |
5 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥{∅, 𝐴} | |
6 | 0elpw 5350 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐴 | |
7 | eleq1a 2823 | . . . . . 6 ⊢ (∅ ∈ 𝒫 𝐴 → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)) |
9 | pwidg 4618 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) | |
10 | eleq1a 2823 | . . . . . 6 ⊢ (𝐴 ∈ 𝒫 𝐴 → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴)) |
12 | 8, 11 | jaod 858 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → 𝑥 ∈ 𝒫 𝐴)) |
13 | 12 | pm4.71rd 562 | . . 3 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
14 | vex 3473 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 14 | elpr 4647 | . . . 4 ⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
17 | 2 | reqabi 3449 | . . . 4 ⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
18 | diffi 9197 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑥) ∈ Fin) | |
19 | biortn 936 | . . . . . 6 ⊢ ((𝐴 ∖ 𝑥) ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
21 | 20 | anbi2d 628 | . . . 4 ⊢ (𝐴 ∈ Fin → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))))) |
22 | 17, 21 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑥 = ∅ ∨ 𝑥 = 𝐴)))) |
23 | 13, 16, 22 | 3bitr4rd 312 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ {∅, 𝐴})) |
24 | 1, 4, 5, 23 | eqrd 3997 | 1 ⊢ (𝐴 ∈ Fin → 𝑇 = {∅, 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 {crab 3427 ∖ cdif 3941 ∅c0 4318 𝒫 cpw 4598 {cpr 4626 Fincfn 8957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-1o 8480 df-en 8958 df-fin 8961 |
This theorem is referenced by: topdifinf 36818 |
Copyright terms: Public domain | W3C validator |