MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintrbi Structured version   Visualization version   GIF version

Theorem exintrbi 1895
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
Assertion
Ref Expression
exintrbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))

Proof of Theorem exintrbi
StepHypRef Expression
1 abai 823 . . 3 ((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))
21rbaibr 537 . 2 ((𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
32alexbii 1836 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator