Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exintrbi | Structured version Visualization version GIF version |
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
Ref | Expression |
---|---|
exintrbi | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abai 824 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝜑 → 𝜓))) | |
2 | 1 | rbaibr 538 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 ↔ (𝜑 ∧ 𝜓))) |
3 | 2 | alexbii 1835 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |