Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albiim Structured version   Visualization version   GIF version

Theorem 2albiim 1885
 Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2albiim (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))

Proof of Theorem 2albiim
StepHypRef Expression
1 albiim 1884 . . 3 (∀𝑦(𝜑𝜓) ↔ (∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)))
21albii 1814 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)))
3 19.26 1865 . 2 (∀𝑥(∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
42, 3bitri 277 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1529 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804 This theorem depends on definitions:  df-bi 209  df-an 399 This theorem is referenced by:  sbnf2  2371  2eu6  2738  eqopab2bw  5426  eqopab2b  5430  eqrel  5651  eqrelrel  5663  eqoprab2bw  7216  eqoprab2b  7217  eqrelrd2  30359  eqrel2  35549  relcnveq2  35572  elrelscnveq2  35725  pm14.123a  40748  ichan  43621
 Copyright terms: Public domain W3C validator