|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2albiim | Structured version Visualization version GIF version | ||
| Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 2albiim | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | albiim 1888 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | 
| 3 | 19.26 1869 | . 2 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: sbnf2 2360 2eu6 2656 eqopab2bw 5552 eqopab2b 5556 eqrel 5793 eqrelrel 5806 eqoprab2bw 7504 eqoprab2b 7505 eqrelrd2 32629 eqrel2 38301 relcnveq2 38325 elrelscnveq2 38495 pm14.123a 44449 | 
| Copyright terms: Public domain | W3C validator |