![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2albiim | Structured version Visualization version GIF version |
Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2albiim | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1885 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | |
2 | 1 | albii 1814 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) |
3 | 19.26 1866 | . 2 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sbnf2 2350 2eu6 2648 eqopab2bw 5550 eqopab2b 5554 eqrel 5786 eqrelrel 5799 eqoprab2bw 7490 eqoprab2b 7491 eqrelrd2 32405 eqrel2 37771 relcnveq2 37795 elrelscnveq2 37965 pm14.123a 43862 |
Copyright terms: Public domain | W3C validator |