| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2albiim | Structured version Visualization version GIF version | ||
| Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2albiim | ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . . 3 ⊢ (∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑))) |
| 3 | 19.26 1870 | . 2 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ∧ ∀𝑦(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbnf2 2357 2eu6 2651 eqopab2bw 5511 eqopab2b 5515 eqrel 5750 eqrelrel 5763 eqoprab2bw 7462 eqoprab2b 7463 eqrelrd2 32551 eqrel2 38294 relcnveq2 38318 elrelscnveq2 38491 pm14.123a 44421 |
| Copyright terms: Public domain | W3C validator |