MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albiim Structured version   Visualization version   GIF version

Theorem 2albiim 1894
Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2albiim (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))

Proof of Theorem 2albiim
StepHypRef Expression
1 albiim 1893 . . 3 (∀𝑦(𝜑𝜓) ↔ (∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)))
21albii 1822 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)))
3 19.26 1874 . 2 (∀𝑥(∀𝑦(𝜑𝜓) ∧ ∀𝑦(𝜓𝜑)) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
42, 3bitri 275 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  sbnf2  2355  2eu6  2653  eqopab2bw  5549  eqopab2b  5553  eqrel  5785  eqrelrel  5798  eqoprab2bw  7479  eqoprab2b  7480  eqrelrd2  31845  eqrel2  37168  relcnveq2  37192  elrelscnveq2  37363  pm14.123a  43184
  Copyright terms: Public domain W3C validator