Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimddvf Structured version   Visualization version   GIF version

Theorem exlimddvf 35268
 Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
exlimddvf.1 (𝜑 → ∃𝑥𝜃)
exlimddvf.2 𝑥𝜓
exlimddvf.3 ((𝜃𝜓) → 𝜒)
exlimddvf.4 𝑥𝜒
Assertion
Ref Expression
exlimddvf ((𝜑𝜓) → 𝜒)

Proof of Theorem exlimddvf
StepHypRef Expression
1 exlimddvf.1 . 2 (𝜑 → ∃𝑥𝜃)
2 exlimddvf.2 . . 3 𝑥𝜓
3 exlimddvf.4 . . 3 𝑥𝜒
4 exlimddvf.3 . . . 4 ((𝜃𝜓) → 𝜒)
54expcom 414 . . 3 (𝜓 → (𝜃𝜒))
62, 3, 5exlimd 2209 . 2 (𝜓 → (∃𝑥𝜃𝜒))
71, 6mpan9 507 1 ((𝜑𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396  ∃wex 1773  Ⅎwnf 1777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-12 2167 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-nf 1778 This theorem is referenced by:  exlimddvfi  35269
 Copyright terms: Public domain W3C validator