| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvf | Structured version Visualization version GIF version | ||
| Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| exlimddvf.1 | ⊢ (𝜑 → ∃𝑥𝜃) |
| exlimddvf.2 | ⊢ Ⅎ𝑥𝜓 |
| exlimddvf.3 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| exlimddvf.4 | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| exlimddvf | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddvf.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜃) | |
| 2 | exlimddvf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | exlimddvf.4 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | exlimddvf.3 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 5 | 4 | expcom 413 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜒)) |
| 6 | 2, 3, 5 | exlimd 2218 | . 2 ⊢ (𝜓 → (∃𝑥𝜃 → 𝜒)) |
| 7 | 1, 6 | mpan9 506 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimddvfi 38129 |
| Copyright terms: Public domain | W3C validator |