Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvf | Structured version Visualization version GIF version |
Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
exlimddvf.1 | ⊢ (𝜑 → ∃𝑥𝜃) |
exlimddvf.2 | ⊢ Ⅎ𝑥𝜓 |
exlimddvf.3 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
exlimddvf.4 | ⊢ Ⅎ𝑥𝜒 |
Ref | Expression |
---|---|
exlimddvf | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvf.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜃) | |
2 | exlimddvf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | exlimddvf.4 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
4 | exlimddvf.3 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
5 | 4 | expcom 413 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜒)) |
6 | 2, 3, 5 | exlimd 2214 | . 2 ⊢ (𝜓 → (∃𝑥𝜃 → 𝜒)) |
7 | 1, 6 | mpan9 506 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: exlimddvfi 36207 |
Copyright terms: Public domain | W3C validator |