Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpan9 | Structured version Visualization version GIF version |
Description: Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpan9.1 | ⊢ (𝜑 → 𝜓) |
mpan9.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
mpan9 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan9.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpan9.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | 1, 2 | syl5 34 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | impcom 407 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Copyright terms: Public domain | W3C validator |