Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spesbcdi Structured version   Visualization version   GIF version

Theorem spesbcdi 37582
Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
spesbcdi.1 (𝜑𝜓)
spesbcdi.2 ([𝐴 / 𝑥]𝜒𝜓)
Assertion
Ref Expression
spesbcdi (𝜑 → ∃𝑥𝜒)

Proof of Theorem spesbcdi
StepHypRef Expression
1 spesbcdi.1 . . 3 (𝜑𝜓)
2 spesbcdi.2 . . 3 ([𝐴 / 𝑥]𝜒𝜓)
31, 2sylibr 233 . 2 (𝜑[𝐴 / 𝑥]𝜒)
43spesbcd 3873 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1774  [wsbc 3774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-v 3471  df-sbc 3775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator