Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spesbcdi Structured version   Visualization version   GIF version

Theorem spesbcdi 36205
Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
spesbcdi.1 (𝜑𝜓)
spesbcdi.2 ([𝐴 / 𝑥]𝜒𝜓)
Assertion
Ref Expression
spesbcdi (𝜑 → ∃𝑥𝜒)

Proof of Theorem spesbcdi
StepHypRef Expression
1 spesbcdi.1 . . 3 (𝜑𝜓)
2 spesbcdi.2 . . 3 ([𝐴 / 𝑥]𝜒𝜓)
31, 2sylibr 233 . 2 (𝜑[𝐴 / 𝑥]𝜒)
43spesbcd 3812 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1783  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator