Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spesbcdi | Structured version Visualization version GIF version |
Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
spesbcdi.1 | ⊢ (𝜑 → 𝜓) |
spesbcdi.2 | ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
spesbcdi | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcdi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | spesbcdi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜒) |
4 | 3 | spesbcd 3816 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-sbc 3717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |