| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spesbcdi | Structured version Visualization version GIF version | ||
| Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| spesbcdi.1 | ⊢ (𝜑 → 𝜓) |
| spesbcdi.2 | ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| spesbcdi | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spesbcdi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | spesbcdi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜒) |
| 4 | 3 | spesbcd 3830 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-sbc 3738 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |