MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmoeub Structured version   Visualization version   GIF version

Theorem exmoeub 2627
Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeub (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))

Proof of Theorem exmoeub
StepHypRef Expression
1 df-eu 2614 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21baibr 537 1 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wex 1765  ∃*wmo 2576  ∃!weu 2613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-eu 2614
This theorem is referenced by:  exmoeu  2628  moeu  2630  euim  2671  fneu  6338
  Copyright terms: Public domain W3C validator