![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exmoeub | Structured version Visualization version GIF version |
Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
exmoeub | ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2614 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | baibr 537 | 1 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∃wex 1765 ∃*wmo 2576 ∃!weu 2613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-eu 2614 |
This theorem is referenced by: exmoeu 2628 moeu 2630 euim 2671 fneu 6338 |
Copyright terms: Public domain | W3C validator |