|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exmoeub | Structured version Visualization version GIF version | ||
| Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| exmoeub | ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | baibr 536 | 1 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2569 | 
| This theorem is referenced by: exmoeu 2581 moeu 2583 euim 2617 fneu 6678 | 
| Copyright terms: Public domain | W3C validator |