![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneu | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fneu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmo 6593 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦) |
3 | eldmg 5923 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦)) | |
4 | 3 | ibi 267 | . . . . 5 ⊢ (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦) |
6 | exmoeub 2583 | . . . 4 ⊢ (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) |
8 | 2, 7 | mpbid 232 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦) |
9 | 8 | funfni 6685 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 class class class wbr 5166 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fneu2 6690 fnbrfvb 6973 mapsnd 8944 fnbrafv2b 47163 |
Copyright terms: Public domain | W3C validator |