MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneu Structured version   Visualization version   GIF version

Theorem fneu 6591
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fneu ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem fneu
StepHypRef Expression
1 funmo 6497 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦)
21adantr 480 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦)
3 eldmg 5838 . . . . . 6 (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦))
43ibi 267 . . . . 5 (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦)
54adantl 481 . . . 4 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦)
6 exmoeub 2575 . . . 4 (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦))
75, 6syl 17 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦))
82, 7mpbid 232 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦)
98funfni 6587 1 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑦 𝐵𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111  ∃*wmo 2533  ∃!weu 2563   class class class wbr 5091  dom cdm 5616  Fun wfun 6475   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-fun 6483  df-fn 6484
This theorem is referenced by:  fneu2  6592  fnbrfvb  6872  mapsnd  8810  brpermmodel  45042  fnbrafv2b  47285
  Copyright terms: Public domain W3C validator