| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneu | Structured version Visualization version GIF version | ||
| Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo 6581 | . . . 4 ⊢ (Fun 𝐹 → ∃*𝑦 𝐵𝐹𝑦) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃*𝑦 𝐵𝐹𝑦) |
| 3 | eldmg 5909 | . . . . . 6 ⊢ (𝐵 ∈ dom 𝐹 → (𝐵 ∈ dom 𝐹 ↔ ∃𝑦 𝐵𝐹𝑦)) | |
| 4 | 3 | ibi 267 | . . . . 5 ⊢ (𝐵 ∈ dom 𝐹 → ∃𝑦 𝐵𝐹𝑦) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑦 𝐵𝐹𝑦) |
| 6 | exmoeub 2580 | . . . 4 ⊢ (∃𝑦 𝐵𝐹𝑦 → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (∃*𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦 𝐵𝐹𝑦)) |
| 8 | 2, 7 | mpbid 232 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃!𝑦 𝐵𝐹𝑦) |
| 9 | 8 | funfni 6674 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 class class class wbr 5143 dom cdm 5685 Fun wfun 6555 Fn wfn 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-fun 6563 df-fn 6564 |
| This theorem is referenced by: fneu2 6679 fnbrfvb 6959 mapsnd 8926 fnbrafv2b 47260 |
| Copyright terms: Public domain | W3C validator |