Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exmoeu | Structured version Visualization version GIF version |
Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Wolf Lammen, 5-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
exmoeu | ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmoeub 2580 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
2 | 1 | biimpd 228 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
3 | nexmo 2541 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
4 | 3 | con1i 147 | . . 3 ⊢ (¬ ∃*𝑥𝜑 → ∃𝑥𝜑) |
5 | euex 2577 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
6 | 4, 5 | ja 186 | . 2 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) |
7 | 2, 6 | impbii 208 | 1 ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |