|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exmoeu | Structured version Visualization version GIF version | ||
| Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Wolf Lammen, 5-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| exmoeu | ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmoeub 2579 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) | 
| 3 | nexmo 2540 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
| 4 | 3 | con1i 147 | . . 3 ⊢ (¬ ∃*𝑥𝜑 → ∃𝑥𝜑) | 
| 5 | euex 2576 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 6 | 4, 5 | ja 186 | . 2 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) | 
| 7 | 2, 6 | impbii 209 | 1 ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1778 ∃*wmo 2537 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: tfsconcatlem 43354 | 
| Copyright terms: Public domain | W3C validator |