| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exmoeu | Structured version Visualization version GIF version | ||
| Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Wolf Lammen, 5-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| exmoeu | ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmoeub 2580 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
| 2 | 1 | biimpd 229 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| 3 | nexmo 2541 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | |
| 4 | 3 | con1i 147 | . . 3 ⊢ (¬ ∃*𝑥𝜑 → ∃𝑥𝜑) |
| 5 | euex 2577 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 6 | 4, 5 | ja 186 | . 2 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) |
| 7 | 2, 6 | impbii 209 | 1 ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: tfsconcatlem 43327 |
| Copyright terms: Public domain | W3C validator |