MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euim Structured version   Visualization version   GIF version

Theorem euim 2620
Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof shortened by Wolf Lammen, 1-Oct-2023.)
Assertion
Ref Expression
euim ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))

Proof of Theorem euim
StepHypRef Expression
1 euimmo 2619 . 2 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
2 exmoeub 2583 . . 3 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
32biimpd 229 . 2 (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑))
41, 3sylan9r 508 1 ((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1777  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572
This theorem is referenced by:  2eu1  2654  2eu1v  2655  dfatcolem  47170
  Copyright terms: Public domain W3C validator