Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version |
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2540 was then proved as dfmo 2596. (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moabs 2543 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | exmoeub 2580 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
3 | 2 | pm5.74i 270 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 |
This theorem is referenced by: dfeu 2595 dfmo 2596 sb8mo 2601 cbvmowOLD 2604 2euexv 2633 2euex 2643 2eu1 2652 2eu1v 2653 rmo5 3355 funeu 6443 dffun8 6446 modom 8953 climmo 15194 rmoxfrd 30742 nmotru 34524 amosym1 34542 bj-moeub 34960 wl-sb8mot 35660 nexmo1 36313 moxfr 40430 funressneu 44428 funressndmafv2rn 44602 |
Copyright terms: Public domain | W3C validator |