| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version | ||
| Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2537 was then proved as dfmo 2593. (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moabs 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
| 2 | exmoeub 2577 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
| 3 | 2 | pm5.74i 271 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 ∃*wmo 2535 ∃!weu 2565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-eu 2566 |
| This theorem is referenced by: dfeu 2592 dfmo 2593 sb8mo 2598 2euexv 2628 2euex 2638 2eu1 2648 2eu1v 2649 rmo5 3365 funeu 6514 dffun8 6517 modom 9146 climmo 15471 rmoxfrd 32493 nmotru 36524 bj-moeub 36966 wl-sb8mot 37697 wl-sb8motv 37698 nexmo1 38357 moeu2 38467 moxfr 42849 funressneu 47209 funressndmafv2rn 47385 |
| Copyright terms: Public domain | W3C validator |