MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeu Structured version   Visualization version   GIF version

Theorem moeu 2583
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2540 was then proved as dfmo 2596. (Revised by BJ, 30-Sep-2022.)
Assertion
Ref Expression
moeu (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))

Proof of Theorem moeu
StepHypRef Expression
1 moabs 2543 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2 exmoeub 2580 . . 3 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
32pm5.74i 270 . 2 ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
41, 3bitri 274 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1783  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540  df-eu 2569
This theorem is referenced by:  dfeu  2595  dfmo  2596  sb8mo  2601  cbvmowOLD  2604  2euexv  2633  2euex  2643  2eu1  2652  2eu1v  2653  rmo5  3355  funeu  6443  dffun8  6446  modom  8953  climmo  15194  rmoxfrd  30742  nmotru  34524  amosym1  34542  bj-moeub  34960  wl-sb8mot  35660  nexmo1  36313  moxfr  40430  funressneu  44428  funressndmafv2rn  44602
  Copyright terms: Public domain W3C validator