MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeu Structured version   Visualization version   GIF version

Theorem moeu 2583
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2540 was then proved as dfmo 2596. (Revised by BJ, 30-Sep-2022.)
Assertion
Ref Expression
moeu (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))

Proof of Theorem moeu
StepHypRef Expression
1 moabs 2543 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2 exmoeub 2580 . . 3 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
32pm5.74i 270 . 2 ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
41, 3bitri 274 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-eu 2569
This theorem is referenced by:  dfeu  2595  dfmo  2596  sb8mo  2601  cbvmowOLD  2604  2euexv  2633  2euex  2643  2eu1  2652  2eu1v  2653  rmo5  3365  funeu  6459  dffun8  6462  modom  9023  climmo  15266  rmoxfrd  30841  nmotru  34597  amosym1  34615  bj-moeub  35033  wl-sb8mot  35733  nexmo1  36386  moxfr  40514  funressneu  44541  funressndmafv2rn  44715
  Copyright terms: Public domain W3C validator