Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version |
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2558 was then proved as dfmo 2617. (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moabs 2561 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | exmoeub 2600 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
3 | 2 | pm5.74i 274 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
4 | 1, 3 | bitri 278 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃wex 1782 ∃*wmo 2556 ∃!weu 2588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-mo 2558 df-eu 2589 |
This theorem is referenced by: dfeu 2616 dfmo 2617 sb8mo 2622 cbvmowOLD 2624 2euexv 2653 2euex 2663 2eu1 2672 2eu1v 2673 rmo5 3342 funeu 6353 dffun8 6356 modom 8733 climmo 14947 rmoxfrd 30348 nmotru 34131 amosym1 34149 bj-moeub 34554 wl-sb8mot 35244 nexmo1 35933 moxfr 39991 funressneu 43990 funressndmafv2rn 44132 |
Copyright terms: Public domain | W3C validator |