| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version | ||
| Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2533 was then proved as dfmo 2589. (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moabs 2536 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
| 2 | exmoeub 2573 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
| 3 | 2 | pm5.74i 271 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: dfeu 2588 dfmo 2589 sb8mo 2594 2euexv 2624 2euex 2634 2eu1 2644 2eu1v 2645 rmo5 3374 funeu 6541 dffun8 6544 modom 9191 climmo 15523 rmoxfrd 32422 nmotru 36396 bj-moeub 36837 wl-sb8mot 37568 wl-sb8motv 37569 nexmo1 38236 moeu2 38344 moxfr 42680 funressneu 47045 funressndmafv2rn 47221 |
| Copyright terms: Public domain | W3C validator |