![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version |
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2543 was then proved as dfmo 2599. (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moabs 2546 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | exmoeub 2583 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
3 | 2 | pm5.74i 271 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1777 ∃*wmo 2541 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 |
This theorem is referenced by: dfeu 2598 dfmo 2599 sb8mo 2604 2euexv 2634 2euex 2644 2eu1 2654 2eu1v 2655 rmo5 3408 funeu 6603 dffun8 6606 modom 9307 climmo 15603 rmoxfrd 32521 nmotru 36374 bj-moeub 36815 wl-sb8mot 37534 wl-sb8motv 37535 nexmo1 38203 moeu2 38318 moxfr 42648 funressneu 46962 funressndmafv2rn 47138 |
Copyright terms: Public domain | W3C validator |