MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeu Structured version   Visualization version   GIF version

Theorem moeu 2668
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2622 was then proved as dfmo 2682. (Revised by BJ, 30-Sep-2022.)
Assertion
Ref Expression
moeu (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))

Proof of Theorem moeu
StepHypRef Expression
1 moabs 2625 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2 exmoeub 2665 . . 3 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
32pm5.74i 273 . 2 ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
41, 3bitri 277 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wex 1780  ∃*wmo 2620  ∃!weu 2653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-mo 2622  df-eu 2654
This theorem is referenced by:  dfeu  2681  dfmo  2682  sb8mo  2687  cbvmow  2688  2euexv  2716  2euex  2726  2eu1  2735  2eu1v  2736  rmo5  3434  funeu  6380  dffun8  6383  modom  8719  climmo  14914  rmoxfrd  30257  nmotru  33756  amosym1  33774  bj-moeub  34173  wl-sb8mot  34829  nexmo1  35523  moxfr  39309  funressneu  43302  funressndmafv2rn  43442
  Copyright terms: Public domain W3C validator