MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeu Structured version   Visualization version   GIF version

Theorem moeu 2580
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2537 was then proved as dfmo 2593. (Revised by BJ, 30-Sep-2022.)
Assertion
Ref Expression
moeu (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))

Proof of Theorem moeu
StepHypRef Expression
1 moabs 2540 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2 exmoeub 2577 . . 3 (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
32pm5.74i 271 . 2 ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
41, 3bitri 275 1 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1780  ∃*wmo 2535  ∃!weu 2565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2537  df-eu 2566
This theorem is referenced by:  dfeu  2592  dfmo  2593  sb8mo  2598  2euexv  2628  2euex  2638  2eu1  2648  2eu1v  2649  rmo5  3365  funeu  6514  dffun8  6517  modom  9146  climmo  15471  rmoxfrd  32493  nmotru  36524  bj-moeub  36966  wl-sb8mot  37697  wl-sb8motv  37698  nexmo1  38357  moeu2  38467  moxfr  42849  funressneu  47209  funressndmafv2rn  47385
  Copyright terms: Public domain W3C validator