![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeu | Structured version Visualization version GIF version |
Description: Uniqueness is equivalent to existence implying unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by NM, 8-Mar-1995.) This used to be the definition of the at-most-one quantifier, while df-mo 2605 was then proved as dfmo 2668. (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
moeu | ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moabs 2609 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | |
2 | exmoeub 2653 | . . 3 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | |
3 | 2 | pm5.74i 263 | . 2 ⊢ ((∃𝑥𝜑 → ∃*𝑥𝜑) ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
4 | 1, 3 | bitri 267 | 1 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∃wex 1878 ∃*wmo 2603 ∃!weu 2639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-mo 2605 df-eu 2640 |
This theorem is referenced by: dfeu 2667 dfmo 2668 exmoOLD 2672 mobidvOLDOLD 2674 nfmo1OLD 2675 nfmod2OLD 2677 mobidOLDOLD 2681 dfeuOLD 2683 moabsOLD 2684 exmoeuOLD 2685 sb8mo 2689 cbvmoOLD 2693 2euex 2724 2eu1 2733 bm1.1OLD 2809 rmo5 3374 moeqOLD 3607 zfnuleuOLD 5012 funeu 6152 dffun8 6155 modom 8436 climmo 14672 rmoxfrd 29881 nmotru 32936 amosym1 32953 bj-moeub 33350 wl-sb8mot 33899 nexmo1 34560 moxfr 38094 funressneu 41973 funressndmafv2rn 42119 |
Copyright terms: Public domain | W3C validator |