Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp520 | Structured version Visualization version GIF version |
Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
Ref | Expression |
---|---|
exp520.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
exp520 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp520.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) |
3 | 2 | exp5o 1353 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: omwordri 8365 oewordri 8385 lcmfunsnlem2 16273 clwwlknonex2lem2 28373 pclfinclN 37891 |
Copyright terms: Public domain | W3C validator |