MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp520 Structured version   Visualization version   GIF version

Theorem exp520 1356
Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
exp520.1 (((𝜑𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂)
Assertion
Ref Expression
exp520 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp520
StepHypRef Expression
1 exp520.1 . . 3 (((𝜑𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂)
21ex 413 . 2 ((𝜑𝜓𝜒) → ((𝜃𝜏) → 𝜂))
32exp5o 1354 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  omwordri  8403  oewordri  8423  lcmfunsnlem2  16345  clwwlknonex2lem2  28472  pclfinclN  37964
  Copyright terms: Public domain W3C validator