MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 8490
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2 oveq2 7357 . . . . . 6 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
31, 2sseq12d 3969 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅)))
4 oveq2 7357 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
5 oveq2 7357 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
64, 5sseq12d 3969 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)))
7 oveq2 7357 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
8 oveq2 7357 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
97, 8sseq12d 3969 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦)))
10 oveq2 7357 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
11 oveq2 7357 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1210, 11sseq12d 3969 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
13 om0 8435 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
14 0ss 4351 . . . . . . 7 ∅ ⊆ (𝐵 ·o ∅)
1513, 14eqsstrdi 3980 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
1615ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
17 omcl 8454 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
18173adant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
19 omcl 8454 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
20193adant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
21 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 8468 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2318, 20, 21, 22syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2423imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
2524adantrl 716 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
26 oaword 8467 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2720, 26syld3an3 1411 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2827biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
2928adantrr 717 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
3025, 29sstrd 3946 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
31 omsuc 8444 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
32313adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
3332adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
34 omsuc 8444 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
35343adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3635adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3730, 33, 363sstr4d 3991 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))
3837exp520 1358 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
3938com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
4039imp4c 423 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))
41 vex 3440 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4960 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦))
43 omlim 8451 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
4443ad2ant2rl 749 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
45 omlim 8451 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4645adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4744, 46sseq12d 3969 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦)))
4842, 47imbitrrid 246 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
4948anandirs 679 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5041, 49mpanr1 703 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5150expcom 413 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
5251adantrd 491 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 7798 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
5453expd 415 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))))
55543impib 1116 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
56553coml 1127 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  c0 4284   ciun 4941  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349   +o coa 8385   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-omul 8393
This theorem is referenced by:  omword2  8492  oewordri  8510  oeordsuc  8512  omabs2  43305
  Copyright terms: Public domain W3C validator