MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 8365
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2 oveq2 7263 . . . . . 6 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
31, 2sseq12d 3950 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅)))
4 oveq2 7263 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
5 oveq2 7263 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
64, 5sseq12d 3950 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)))
7 oveq2 7263 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
8 oveq2 7263 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
97, 8sseq12d 3950 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦)))
10 oveq2 7263 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
11 oveq2 7263 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1210, 11sseq12d 3950 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
13 om0 8309 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
14 0ss 4327 . . . . . . 7 ∅ ⊆ (𝐵 ·o ∅)
1513, 14eqsstrdi 3971 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
1615ad2antrr 722 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
17 omcl 8328 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
18173adant2 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
19 omcl 8328 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
20193adant1 1128 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
21 simp1 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 8343 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2318, 20, 21, 22syl3anc 1369 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2423imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
2524adantrl 712 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
26 oaword 8342 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2720, 26syld3an3 1407 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2827biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
2928adantrr 713 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
3025, 29sstrd 3927 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
31 omsuc 8318 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
32313adant2 1129 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
3332adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
34 omsuc 8318 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
35343adant1 1128 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3635adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3730, 33, 363sstr4d 3964 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))
3837exp520 1355 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
3938com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
4039imp4c 423 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))
41 vex 3426 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4939 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦))
43 omlim 8325 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
4443ad2ant2rl 745 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
45 omlim 8325 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4645adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4744, 46sseq12d 3950 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦)))
4842, 47syl5ibr 245 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
4948anandirs 675 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5041, 49mpanr1 699 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5150expcom 413 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
5251adantrd 491 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 7686 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
5453expd 415 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))))
55543impib 1114 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
56553coml 1125 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253   ciun 4921  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255   +o coa 8264   ·o comu 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272
This theorem is referenced by:  omword2  8367  oewordri  8385  oeordsuc  8387
  Copyright terms: Public domain W3C validator