MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 8388
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7279 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2 oveq2 7279 . . . . . 6 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
31, 2sseq12d 3959 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅)))
4 oveq2 7279 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
5 oveq2 7279 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
64, 5sseq12d 3959 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)))
7 oveq2 7279 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
8 oveq2 7279 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
97, 8sseq12d 3959 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦)))
10 oveq2 7279 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
11 oveq2 7279 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1210, 11sseq12d 3959 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
13 om0 8332 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
14 0ss 4336 . . . . . . 7 ∅ ⊆ (𝐵 ·o ∅)
1513, 14eqsstrdi 3980 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
1615ad2antrr 723 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
17 omcl 8351 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
18173adant2 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
19 omcl 8351 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
20193adant1 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
21 simp1 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 8366 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2318, 20, 21, 22syl3anc 1370 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2423imp 407 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
2524adantrl 713 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
26 oaword 8365 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2720, 26syld3an3 1408 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2827biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
2928adantrr 714 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
3025, 29sstrd 3936 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
31 omsuc 8341 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
32313adant2 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
3332adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
34 omsuc 8341 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
35343adant1 1129 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3635adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3730, 33, 363sstr4d 3973 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))
3837exp520 1356 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
3938com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
4039imp4c 424 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))
41 vex 3435 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4948 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦))
43 omlim 8348 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
4443ad2ant2rl 746 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
45 omlim 8348 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4645adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4744, 46sseq12d 3959 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦)))
4842, 47syl5ibr 245 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
4948anandirs 676 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5041, 49mpanr1 700 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5150expcom 414 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
5251adantrd 492 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 7705 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
5453expd 416 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))))
55543impib 1115 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
56553coml 1126 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892  c0 4262   ciun 4930  Oncon0 6265  Lim wlim 6266  suc csuc 6267  (class class class)co 7271   +o coa 8285   ·o comu 8286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-oadd 8292  df-omul 8293
This theorem is referenced by:  omword2  8390  oewordri  8408  oeordsuc  8410
  Copyright terms: Public domain W3C validator