MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 8201
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7167 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
2 oveq2 7167 . . . . . 6 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
31, 2sseq12d 4003 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅)))
4 oveq2 7167 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
5 oveq2 7167 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
64, 5sseq12d 4003 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)))
7 oveq2 7167 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
8 oveq2 7167 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
97, 8sseq12d 4003 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦)))
10 oveq2 7167 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
11 oveq2 7167 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1210, 11sseq12d 4003 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
13 om0 8145 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
14 0ss 4353 . . . . . . 7 ∅ ⊆ (𝐵 ·o ∅)
1513, 14eqsstrdi 4024 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
1615ad2antrr 724 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o ∅) ⊆ (𝐵 ·o ∅))
17 omcl 8164 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
18173adant2 1127 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
19 omcl 8164 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
20193adant1 1126 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
21 simp1 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 8179 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2318, 20, 21, 22syl3anc 1367 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴)))
2423imp 409 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
2524adantrl 714 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐴))
26 oaword 8178 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2720, 26syld3an3 1405 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵)))
2827biimpa 479 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
2928adantrr 715 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐵 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
3025, 29sstrd 3980 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝑦) +o 𝐴) ⊆ ((𝐵 ·o 𝑦) +o 𝐵))
31 omsuc 8154 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
32313adant2 1127 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
3332adantr 483 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
34 omsuc 8154 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
35343adant1 1126 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3635adantr 483 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3730, 33, 363sstr4d 4017 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦))) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))
3837exp520 1353 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
3938com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))))
4039imp4c 426 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o suc 𝑦) ⊆ (𝐵 ·o suc 𝑦))))
41 vex 3500 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4940 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦))
43 omlim 8161 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
4443ad2ant2rl 747 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·o 𝑥) = 𝑦𝑥 (𝐴 ·o 𝑦))
45 omlim 8161 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4645adantl 484 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
4744, 46sseq12d 4003 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥) ↔ 𝑦𝑥 (𝐴 ·o 𝑦) ⊆ 𝑦𝑥 (𝐵 ·o 𝑦)))
4842, 47syl5ibr 248 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
4948anandirs 677 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5041, 49mpanr1 701 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥)))
5150expcom 416 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
5251adantrd 494 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·o 𝑦) ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑥) ⊆ (𝐵 ·o 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 7582 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
5453expd 418 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))))
55543impib 1112 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
56553coml 1123 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  c0 4294   ciun 4922  Oncon0 6194  Lim wlim 6195  suc csuc 6196  (class class class)co 7159   +o coa 8102   ·o comu 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109  df-omul 8110
This theorem is referenced by:  omword2  8203  oewordri  8221  oeordsuc  8223
  Copyright terms: Public domain W3C validator