 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impexp Structured version   Visualization version   GIF version

Theorem 3impexp 1468
 Description: Version of impexp 442 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexp (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Proof of Theorem 3impexp
StepHypRef Expression
1 id 22 . . 3 (((𝜑𝜓𝜒) → 𝜃) → ((𝜑𝜓𝜒) → 𝜃))
213expd 1463 . 2 (((𝜑𝜓𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒𝜃))))
3 id 22 . . 3 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜓 → (𝜒𝜃))))
433impd 1458 . 2 ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜑𝜓𝜒) → 𝜃))
52, 4impbii 201 1 (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ w3a 1108 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 199  df-an 386  df-3an 1110 This theorem is referenced by:  cotr2g  14058  bnj978  31536  3impexpbicom  39465  3impexpbicomVD  39853
 Copyright terms: Public domain W3C validator