MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impexp Structured version   Visualization version   GIF version

Theorem 3impexp 1355
Description: Version of impexp 454 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexp (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Proof of Theorem 3impexp
StepHypRef Expression
1 id 22 . . 3 (((𝜑𝜓𝜒) → 𝜃) → ((𝜑𝜓𝜒) → 𝜃))
213expd 1350 . 2 (((𝜑𝜓𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒𝜃))))
3 id 22 . . 3 ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜓 → (𝜒𝜃))))
433impd 1345 . 2 ((𝜑 → (𝜓 → (𝜒𝜃))) → ((𝜑𝜓𝜒) → 𝜃))
52, 4impbii 212 1 (((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  cotr2g  14396  bnj978  32462  ismnuprim  41420  3impexpbicom  41603  3impexpbicomVD  41981
  Copyright terms: Public domain W3C validator