Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impexp | Structured version Visualization version GIF version |
Description: Version of impexp 450 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
3impexp | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | 3expd 1351 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
3 | id 22 | . . 3 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | |
4 | 3 | 3impd 1346 | . 2 ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
5 | 2, 4 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: cotr2g 14615 bnj978 32829 ismnuprim 41801 3impexpbicom 41988 3impexpbicomVD 42366 |
Copyright terms: Public domain | W3C validator |