MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2lem2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2lem2 27448
Description: Lemma 2 for clwwlknonex2 27449: Transformation of a walk and two edges into a walk extended by two vertices/edges. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 27-Jan-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2lem2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝐺(𝑖)   𝑁(𝑖)

Proof of Theorem clwwlknonex2lem2
StepHypRef Expression
1 simpll 784 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
2 elfzonn0 12768 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 ∈ ℕ0)
32adantl 474 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 ∈ ℕ0)
4 lencl 13553 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
5 elfzo0 12764 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) ↔ (𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)))
6 nn0re 11590 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
76adantr 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → 𝑖 ∈ ℝ)
8 nn0re 11590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
9 peano2rem 10640 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℝ)
1110adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) − 1) ∈ ℝ)
128adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (♯‘𝑊) ∈ ℝ)
137, 11, 123jca 1159 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
148ltm1d 11248 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) < (♯‘𝑊))
1514adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) − 1) < (♯‘𝑊))
16 lttr 10404 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝑖 < ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)) → 𝑖 < (♯‘𝑊)))
1716expcomd 407 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (((♯‘𝑊) − 1) < (♯‘𝑊) → (𝑖 < ((♯‘𝑊) − 1) → 𝑖 < (♯‘𝑊))))
1813, 15, 17sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 < ((♯‘𝑊) − 1) → 𝑖 < (♯‘𝑊)))
1918impancom 444 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
20193adant2 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
215, 20sylbi 209 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
224, 21syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 < (♯‘𝑊)))
2322adantr 473 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 < (♯‘𝑊)))
2423imp 396 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 < (♯‘𝑊))
25 simplr 786 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑋𝑉𝑌𝑉))
26 ccat2s1fvw 13662 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑖 ∈ ℕ0𝑖 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (𝑊𝑖))
271, 3, 24, 25, 26syl31anc 1493 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (𝑊𝑖))
2827eqcomd 2805 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖))
29 simpl 475 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
30 peano2nn0 11622 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
31303ad2ant1 1164 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)) → (𝑖 + 1) ∈ ℕ0)
325, 31sylbi 209 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → (𝑖 + 1) ∈ ℕ0)
3332adantl 474 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) ∈ ℕ0)
34 1red 10329 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → 1 ∈ ℝ)
357, 34, 12ltaddsubd 10919 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((𝑖 + 1) < (♯‘𝑊) ↔ 𝑖 < ((♯‘𝑊) − 1)))
3635biimprd 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 < ((♯‘𝑊) − 1) → (𝑖 + 1) < (♯‘𝑊)))
3736impancom 444 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
38373adant2 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
395, 38sylbi 209 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
404, 39mpan9 503 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) < (♯‘𝑊))
4129, 33, 403jca 1159 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ ℕ0 ∧ (𝑖 + 1) < (♯‘𝑊)))
4241adantlr 707 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ ℕ0 ∧ (𝑖 + 1) < (♯‘𝑊)))
43 ccat2s1fvw 13662 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ ℕ0 ∧ (𝑖 + 1) < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
4442, 25, 43syl2anc 580 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
4544eqcomd 2805 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)))
4628, 45preq12d 4465 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))})
4746eleq1d 2863 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4847ralbidva 3166 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4948biimpd 221 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5049impancom 444 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
51503adant3 1163 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
52513ad2ant1 1164 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5352com12 32 . . . . 5 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5453a1dd 50 . . . 4 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
55543adant3 1163 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
5655imp31 409 . 2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
57 ax-1 6 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑋𝑉𝑌𝑉)))
58573adant3 1163 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑋𝑉𝑌𝑉)))
59 simpl 475 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → 𝑊 ∈ Word 𝑉)
60 oveq1 6885 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
6160adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
62 eluzelcn 11942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
63 2cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
64 1cnd 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
6562, 63, 64subsub4d 10715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1)))
66 2p1e3 11462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 + 1) = 3
6766a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (ℤ‘3) → (2 + 1) = 3)
6867oveq2d 6894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 + 1)) = (𝑁 − 3))
69 uznn0sub 11963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → (𝑁 − 3) ∈ ℕ0)
7068, 69eqeltrd 2878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 + 1)) ∈ ℕ0)
7165, 70eqeltrd 2878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) ∈ ℕ0)
7271adantl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) − 1) ∈ ℕ0)
7361, 72eqeltrd 2878 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) − 1) ∈ ℕ0)
7473ancoms 451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ ℕ0)
7574adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → ((♯‘𝑊) − 1) ∈ ℕ0)
764, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
7776adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (♯‘𝑊) ∈ ℝ)
7877ltm1d 11248 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → ((♯‘𝑊) − 1) < (♯‘𝑊))
7959, 75, 783jca 1159 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
8079ex 402 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
8180adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
82813ad2ant1 1164 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
8382imp 396 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
84 simpl2 1245 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (𝑋𝑉𝑌𝑉))
85 ccat2s1fvw 13662 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
8683, 84, 85syl2anc 580 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
87 nn0cn 11591 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
88 ax-1cn 10282 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 npcan 10582 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
9087, 88, 89sylancl 581 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
914, 90syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
9291adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
93923ad2ant1 1164 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
9493fveq2d 6415 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)))
95 eqid 2799 . . . . . . . . . . . . . . . . . . . . 21 (♯‘𝑊) = (♯‘𝑊)
96952a1i 12 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → (♯‘𝑊) = (♯‘𝑊)))
9796imdistani 565 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
98973ad2ant1 1164 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)))
99 simp2l 1257 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → 𝑋𝑉)
100 simp2r 1258 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → 𝑌𝑉)
101 ccatw2s1p1 13660 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
10298, 99, 100, 101syl12anc 866 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
10394, 102eqtrd 2833 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = 𝑋)
104103adantr 473 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = 𝑋)
10586, 104preq12d 4465 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} = {(𝑊‘((♯‘𝑊) − 1)), 𝑋})
106 lsw 13584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
107106adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
108 simpl 475 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → (𝑊‘0) = 𝑋)
109107, 108preq12d 4465 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), 𝑋})
110109eleq1d 2863 . . . . . . . . . . . . . . . . . . . 20 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸))
111110biimpd 221 . . . . . . . . . . . . . . . . . . 19 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸))
112111expcom 403 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word 𝑉 → ((𝑊‘0) = 𝑋 → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)))
113112com23 86 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊‘0) = 𝑋 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)))
114113imp31 409 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
1151143adant2 1162 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
116115adantr 473 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
117105, 116eqeltrd 2878 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)
118117exp520 1467 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
119118com14 96 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1201193ad2ant3 1166 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
12158, 120syld 47 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
122121com25 99 . . . . . . . 8 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
123122com14 96 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1241233adant2 1162 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1251243imp 1138 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))
126125impcom 397 . . . 4 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸))
127126imp 396 . . 3 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)
12895, 101mpanl2 693 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
129 ccatw2s1p2 13661 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)) = 𝑌)
13095, 129mpanl2 693 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)) = 𝑌)
131128, 130preq12d 4465 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})
132131expcom 403 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌}))
133132a1i 11 . . . . . . . . . 10 ({𝑋, 𝑌} ∈ 𝐸 → ((𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
134133com13 88 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1351343ad2ant1 1164 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1361353ad2ant1 1164 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
137136com12 32 . . . . . 6 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1381373adant3 1163 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
139138imp31 409 . . . 4 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})
140 simpr 478 . . . 4 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑋, 𝑌} ∈ 𝐸)
141139, 140eqeltrd 2878 . . 3 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸)
142 ovex 6910 . . . 4 ((♯‘𝑊) − 1) ∈ V
143 fvex 6424 . . . 4 (♯‘𝑊) ∈ V
144 fveq2 6411 . . . . . 6 (𝑖 = ((♯‘𝑊) − 1) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)))
145 fvoveq1 6901 . . . . . 6 (𝑖 = ((♯‘𝑊) − 1) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)))
146144, 145preq12d 4465 . . . . 5 (𝑖 = ((♯‘𝑊) − 1) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))})
147146eleq1d 2863 . . . 4 (𝑖 = ((♯‘𝑊) − 1) → ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸))
148 fveq2 6411 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)))
149 fvoveq1 6901 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)))
150148, 149preq12d 4465 . . . . 5 (𝑖 = (♯‘𝑊) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))})
151150eleq1d 2863 . . . 4 (𝑖 = (♯‘𝑊) → ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸))
152142, 143, 147, 151ralpr 4428 . . 3 (∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸 ∧ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸))
153127, 141, 152sylanbrc 579 . 2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
154 ralunb 3992 . 2 (∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
15556, 153, 154sylanbrc 579 1 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  cun 3767  {cpr 4370   class class class wbr 4843  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   < clt 10363  cmin 10556  cn 11312  2c2 11368  3c3 11369  0cn0 11580  cuz 11930  ..^cfzo 12720  chash 13370  Word cword 13534  lastSclsw 13582   ++ cconcat 13590  ⟨“cs1 13615  Vtxcvtx 26231  Edgcedg 26282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-lsw 13583  df-concat 13591  df-s1 13616
This theorem is referenced by:  clwwlknonex2  27449
  Copyright terms: Public domain W3C validator