MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2lem2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2lem2 29052
Description: Lemma 2 for clwwlknonex2 29053: Transformation of a walk and two edges into a walk extended by two vertices/edges. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 27-Jan-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2lem2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝐺(𝑖)   𝑁(𝑖)

Proof of Theorem clwwlknonex2lem2
StepHypRef Expression
1 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ Word 𝑉)
21adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝑉)
3 elfzonn0 13617 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 ∈ ℕ0)
43adantl 482 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 ∈ ℕ0)
5 lencl 14421 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
6 elfzo0 13613 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) ↔ (𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)))
7 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
87adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → 𝑖 ∈ ℝ)
9 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
10 peano2rem 11468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℝ)
1211adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) − 1) ∈ ℝ)
139adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (♯‘𝑊) ∈ ℝ)
148, 12, 133jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
159ltm1d 12087 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) < (♯‘𝑊))
1615adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) − 1) < (♯‘𝑊))
17 lttr 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝑖 < ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)) → 𝑖 < (♯‘𝑊)))
1817expcomd 417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℝ ∧ ((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (((♯‘𝑊) − 1) < (♯‘𝑊) → (𝑖 < ((♯‘𝑊) − 1) → 𝑖 < (♯‘𝑊))))
1914, 16, 18sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 < ((♯‘𝑊) − 1) → 𝑖 < (♯‘𝑊)))
2019impancom 452 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
21203adant2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
226, 21sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0𝑖 < (♯‘𝑊)))
235, 22syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 < (♯‘𝑊)))
2423adantr 481 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → 𝑖 < (♯‘𝑊)))
2524imp 407 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 < (♯‘𝑊))
26 ccat2s1fvw 14526 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑖 ∈ ℕ0𝑖 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (𝑊𝑖))
272, 4, 25, 26syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (𝑊𝑖))
2827eqcomd 2742 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖))
29 peano2nn0 12453 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
304, 29syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) ∈ ℕ0)
31 1red 11156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → 1 ∈ ℝ)
328, 31, 13ltaddsubd 11755 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → ((𝑖 + 1) < (♯‘𝑊) ↔ 𝑖 < ((♯‘𝑊) − 1)))
3332biimprd 247 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑖 < ((♯‘𝑊) − 1) → (𝑖 + 1) < (♯‘𝑊)))
3433impancom 452 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℕ0𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
35343adant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑖 < ((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
366, 35sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^((♯‘𝑊) − 1)) → ((♯‘𝑊) ∈ ℕ0 → (𝑖 + 1) < (♯‘𝑊)))
375, 36mpan9 507 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) < (♯‘𝑊))
3837adantlr 713 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) < (♯‘𝑊))
39 ccat2s1fvw 14526 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ ℕ0 ∧ (𝑖 + 1) < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
402, 30, 38, 39syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
4140eqcomd 2742 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)))
4228, 41preq12d 4702 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))})
4342eleq1d 2822 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4443ralbidva 3172 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4544biimpd 228 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4645impancom 452 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
47463adant3 1132 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
48473ad2ant1 1133 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
4948com12 32 . . . . 5 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
5049a1dd 50 . . . 4 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
51503adant3 1132 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)))
5251imp31 418 . 2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
53 ax-1 6 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑋𝑉𝑌𝑉)))
54533adant3 1132 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑋𝑉𝑌𝑉)))
55 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → 𝑊 ∈ Word 𝑉)
56 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
58 eluzelcn 12775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
59 2cnd 12231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
60 1cnd 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
6158, 59, 60subsub4d 11543 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1)))
62 2p1e3 12295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 + 1) = 3
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (ℤ‘3) → (2 + 1) = 3)
6463oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 + 1)) = (𝑁 − 3))
65 uznn0sub 12802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘3) → (𝑁 − 3) ∈ ℕ0)
6664, 65eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ (ℤ‘3) → (𝑁 − (2 + 1)) ∈ ℕ0)
6761, 66eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) ∈ ℕ0)
6867adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((𝑁 − 2) − 1) ∈ ℕ0)
6957, 68eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) − 1) ∈ ℕ0)
7069ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ ℕ0)
7170adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → ((♯‘𝑊) − 1) ∈ ℕ0)
725, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
7372adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (♯‘𝑊) ∈ ℝ)
7473ltm1d 12087 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → ((♯‘𝑊) − 1) < (♯‘𝑊))
7555, 71, 743jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
7675ex 413 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
7776adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
78773ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
7978imp 407 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
80 ccat2s1fvw 14526 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
8179, 80syl 17 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
82 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
83 ax-1cn 11109 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
84 npcan 11410 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8582, 83, 84sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
865, 85syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8786adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
88873ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8988fveq2d 6846 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)))
90 simp1l 1197 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → 𝑊 ∈ Word 𝑉)
91 eqidd 2737 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (♯‘𝑊) = (♯‘𝑊))
92 simp2l 1199 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → 𝑋𝑉)
93 ccatw2s1p1 14524 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ 𝑋𝑉) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
9490, 91, 92, 93syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
9589, 94eqtrd 2776 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = 𝑋)
9695adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)) = 𝑋)
9781, 96preq12d 4702 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} = {(𝑊‘((♯‘𝑊) − 1)), 𝑋})
98 lsw 14452 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
9998adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
100 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → (𝑊‘0) = 𝑋)
10199, 100preq12d 4702 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘((♯‘𝑊) − 1)), 𝑋})
102101eleq1d 2822 . . . . . . . . . . . . . . . . . . . 20 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 ↔ {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸))
103102biimpd 228 . . . . . . . . . . . . . . . . . . 19 (((𝑊‘0) = 𝑋𝑊 ∈ Word 𝑉) → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸))
104103expcom 414 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word 𝑉 → ((𝑊‘0) = 𝑋 → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)))
105104com23 86 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → ({(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸 → ((𝑊‘0) = 𝑋 → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)))
106105imp31 418 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
1071063adant2 1131 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
108107adantr 481 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(𝑊‘((♯‘𝑊) − 1)), 𝑋} ∈ 𝐸)
10997, 108eqeltrd 2838 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (𝑋𝑉𝑌𝑉) ∧ (𝑊‘0) = 𝑋) ∧ (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2))) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)
110109exp520 1357 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
111110com14 96 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1121113ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((𝑋𝑉𝑌𝑉) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
11354, 112syld 47 . . . . . . . . 9 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
114113com25 99 . . . . . . . 8 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
115114com14 96 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1161153adant2 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((♯‘𝑊) = (𝑁 − 2) → ((𝑊‘0) = 𝑋 → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))))
1171163imp 1111 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)))
118117impcom 408 . . . 4 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸))
119118imp 407 . . 3 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸)
120 eqidd 2737 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (♯‘𝑊) = (♯‘𝑊))
121 simprl 769 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
1221, 120, 121, 93syl3anc 1371 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)) = 𝑋)
123 eqid 2736 . . . . . . . . . . . . . 14 (♯‘𝑊) = (♯‘𝑊)
124 ccatw2s1p2 14525 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)) = 𝑌)
125123, 124mpanl2 699 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)) = 𝑌)
126122, 125preq12d 4702 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝑋𝑉𝑌𝑉)) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})
127126expcom 414 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌}))
128127a1i 11 . . . . . . . . . 10 ({𝑋, 𝑌} ∈ 𝐸 → ((𝑋𝑉𝑌𝑉) → (𝑊 ∈ Word 𝑉 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
129128com13 88 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1301293ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1311303ad2ant1 1133 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
132131com12 32 . . . . . 6 ((𝑋𝑉𝑌𝑉) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
1331323adant3 1132 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})))
134133imp31 418 . . . 4 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} = {𝑋, 𝑌})
135 simpr 485 . . . 4 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑋, 𝑌} ∈ 𝐸)
136134, 135eqeltrd 2838 . . 3 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸)
137 ovex 7390 . . . 4 ((♯‘𝑊) − 1) ∈ V
138 fvex 6855 . . . 4 (♯‘𝑊) ∈ V
139 fveq2 6842 . . . . . 6 (𝑖 = ((♯‘𝑊) − 1) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)))
140 fvoveq1 7380 . . . . . 6 (𝑖 = ((♯‘𝑊) − 1) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1)))
141139, 140preq12d 4702 . . . . 5 (𝑖 = ((♯‘𝑊) − 1) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))})
142141eleq1d 2822 . . . 4 (𝑖 = ((♯‘𝑊) − 1) → ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸))
143 fveq2 6842 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)))
144 fvoveq1 7380 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1)) = (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1)))
145143, 144preq12d 4702 . . . . 5 (𝑖 = (♯‘𝑊) → {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} = {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))})
146145eleq1d 2822 . . . 4 (𝑖 = (♯‘𝑊) → ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸))
147137, 138, 142, 146ralpr 4661 . . 3 (∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ({(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) − 1)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ 𝐸 ∧ {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(♯‘𝑊)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘((♯‘𝑊) + 1))} ∈ 𝐸))
148119, 136, 147sylanbrc 583 . 2 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
149 ralunb 4151 . 2 (∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {((♯‘𝑊) − 1), (♯‘𝑊)} {(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
15052, 148, 149sylanbrc 583 1 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cun 3908  {cpr 4588   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cuz 12763  ..^cfzo 13567  chash 14230  Word cword 14402  lastSclsw 14450   ++ cconcat 14458  ⟨“cs1 14483  Vtxcvtx 27947  Edgcedg 27998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484
This theorem is referenced by:  clwwlknonex2  29053
  Copyright terms: Public domain W3C validator