Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   GIF version

Theorem pclfinclN 37961
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 37911 and also pclcmpatN 37912. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a 𝐴 = (Atoms‘𝐾)
pclfincl.c 𝑈 = (PCl‘𝐾)
pclfincl.s 𝑆 = (PSubCl‘𝐾)
Assertion
Ref Expression
pclfinclN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclfinclN
Dummy variables 𝑞 𝑝 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3947 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
21anbi2d 629 . . . . 5 (𝑥 = ∅ → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ ∅ ⊆ 𝐴)))
3 fveq2 6776 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = (𝑈‘∅))
43eleq1d 2823 . . . . 5 (𝑥 = ∅ → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘∅) ∈ 𝑆))
52, 4imbi12d 345 . . . 4 (𝑥 = ∅ → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)))
6 sseq1 3947 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑦𝐴)))
8 fveq2 6776 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98eleq1d 2823 . . . . 5 (𝑥 = 𝑦 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑦) ∈ 𝑆))
107, 9imbi12d 345 . . . 4 (𝑥 = 𝑦 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)))
11 sseq1 3947 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1211anbi2d 629 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
13 fveq2 6776 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑈𝑥) = (𝑈‘(𝑦 ∪ {𝑧})))
1413eleq1d 2823 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
1512, 14imbi12d 345 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
16 sseq1 3947 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716anbi2d 629 . . . . 5 (𝑥 = 𝑋 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑋𝐴)))
18 fveq2 6776 . . . . . 6 (𝑥 = 𝑋 → (𝑈𝑥) = (𝑈𝑋))
1918eleq1d 2823 . . . . 5 (𝑥 = 𝑋 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑋) ∈ 𝑆))
2017, 19imbi12d 345 . . . 4 (𝑥 = 𝑋 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)))
21 pclfincl.c . . . . . . 7 𝑈 = (PCl‘𝐾)
2221pcl0N 37933 . . . . . 6 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
23 pclfincl.s . . . . . . 7 𝑆 = (PSubCl‘𝐾)
24230psubclN 37954 . . . . . 6 (𝐾 ∈ HL → ∅ ∈ 𝑆)
2522, 24eqeltrd 2839 . . . . 5 (𝐾 ∈ HL → (𝑈‘∅) ∈ 𝑆)
2625adantr 481 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)
27 anass 469 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)))
28 vex 3435 . . . . . . . . . . 11 𝑧 ∈ V
2928snss 4721 . . . . . . . . . 10 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3029anbi2i 623 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) ↔ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴))
31 unss 4119 . . . . . . . . 9 ((𝑦𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3230, 31bitri 274 . . . . . . . 8 ((𝑦𝐴𝑧𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3332anbi2i 623 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
3427, 33bitr2i 275 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴))
35 simpllr 773 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 = ∅)
3635uneq1d 4097 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧}))
37 uncom 4088 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑧}) = ({𝑧} ∪ ∅)
38 un0 4326 . . . . . . . . . . . . . . 15 ({𝑧} ∪ ∅) = {𝑧}
3937, 38eqtri 2766 . . . . . . . . . . . . . 14 (∅ ∪ {𝑧}) = {𝑧}
4036, 39eqtrdi 2794 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = {𝑧})
4140fveq2d 6780 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = (𝑈‘{𝑧}))
42 simplrl 774 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
43 hlatl 37371 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4442, 43syl 17 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ AtLat)
45 simprr 770 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
46 pclfincl.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
47 eqid 2738 . . . . . . . . . . . . . . 15 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4846, 47snatpsubN 37761 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → {𝑧} ∈ (PSubSp‘𝐾))
4944, 45, 48syl2anc 584 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ (PSubSp‘𝐾))
5047, 21pclidN 37907 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ {𝑧} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑧}) = {𝑧})
5142, 49, 50syl2anc 584 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘{𝑧}) = {𝑧})
5241, 51eqtrd 2778 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = {𝑧})
5346, 23atpsubclN 37956 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧𝐴) → {𝑧} ∈ 𝑆)
5442, 45, 53syl2anc 584 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ 𝑆)
5552, 54eqeltrd 2839 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
5655exp43 437 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 = ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
57 simplrl 774 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
5846, 21pclssidN 37906 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦𝐴) → 𝑦 ⊆ (𝑈𝑦))
5958ad2antlr 724 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ⊆ (𝑈𝑦))
60 unss1 4114 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑈𝑦) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
62 simprl 768 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ∈ 𝑆)
6346, 23psubclssatN 37952 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆) → (𝑈𝑦) ⊆ 𝐴)
6457, 62, 63syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ⊆ 𝐴)
65 snssi 4743 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
6665ad2antll 726 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ⊆ 𝐴)
67 eqid 2738 . . . . . . . . . . . . . . . . 17 (+𝑃𝐾) = (+𝑃𝐾)
6846, 67paddunssN 37819 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
6957, 64, 66, 68syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7061, 69sstrd 3932 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7146, 67paddssat 37825 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7257, 64, 66, 71syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7346, 21pclssN 37905 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
7457, 70, 72, 73syl3anc 1370 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
75 simprr 770 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
7646, 67, 23paddatclN 37960 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆𝑧𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7757, 62, 75, 76syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7847, 23psubclsubN 37951 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
7957, 77, 78syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
8047, 21pclidN 37907 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8157, 79, 80syl2anc 584 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8274, 81sseqtrd 3962 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8357hllatd 37375 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ Lat)
84 simpllr 773 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ≠ ∅)
8546, 21pcl0bN 37934 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8685ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8786necon3bid 2988 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ≠ ∅ ↔ 𝑦 ≠ ∅))
8884, 87mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ≠ ∅)
89 eqid 2738 . . . . . . . . . . . . . . . . . 18 (le‘𝐾) = (le‘𝐾)
90 eqid 2738 . . . . . . . . . . . . . . . . . 18 (join‘𝐾) = (join‘𝐾)
9189, 90, 46, 67elpaddat 37815 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ (𝑈𝑦) ⊆ 𝐴𝑧𝐴) ∧ (𝑈𝑦) ≠ ∅) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
9283, 64, 75, 88, 91syl31anc 1372 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
93 simp1rl 1237 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ HL)
94933ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → 𝐾 ∈ HL)
9594adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝐾 ∈ HL)
96 simprl 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑤 ∈ (PSubSp‘𝐾))
97 simpl13 1249 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝐴)
98 unss 4119 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑤)
99 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑦𝑤)
10098, 99sylbir 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑦𝑤)
101100ad2antll 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑦𝑤)
102 simpl2 1191 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝 ∈ (𝑈𝑦))
10347, 21elpcliN 37904 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦𝑤𝑤 ∈ (PSubSp‘𝐾)) ∧ 𝑝 ∈ (𝑈𝑦)) → 𝑝𝑤)
10495, 101, 96, 102, 103syl31anc 1372 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝𝑤)
10528snss 4721 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑤 ↔ {𝑧} ⊆ 𝑤)
106105biimpri 227 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ 𝑤𝑧𝑤)
107106adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑧𝑤)
10898, 107sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑧𝑤)
109108ad2antll 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑧𝑤)
110 simpl3 1192 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))
11189, 90, 46, 47psubspi2N 37759 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑤 ∈ (PSubSp‘𝐾) ∧ 𝑞𝐴) ∧ (𝑝𝑤𝑧𝑤𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))) → 𝑞𝑤)
11295, 96, 97, 104, 109, 110, 111syl33anc 1384 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝑤)
113112exp520 1356 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (𝑝 ∈ (𝑈𝑦) → (𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
114113rexlimdv 3211 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
1151143expia 1120 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞𝐴 → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
116115impd 411 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
11792, 116sylbid 239 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
118117ralrimdv 3105 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
119 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦𝐴)
120119, 75jca 512 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦𝐴𝑧𝐴))
121120, 32sylib 217 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
122 vex 3435 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
12346, 47, 21, 122elpclN 37903 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
12457, 121, 123syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
125118, 124sylibrd 258 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → 𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧}))))
126125ssrdv 3928 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ (𝑈‘(𝑦 ∪ {𝑧})))
12782, 126eqssd 3939 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
128127, 77eqeltrd 2839 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
129128exp43 437 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
13056, 129pm2.61dane 3032 . . . . . . . 8 (𝑦 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
131130a2d 29 . . . . . . 7 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
132131imp4b 422 . . . . . 6 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
13334, 132syl5bi 241 . . . . 5 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
134133ex 413 . . . 4 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
1355, 10, 15, 20, 26, 134findcard2 8945 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆))
1361353impib 1115 . 2 ((𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
1371363coml 1126 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cun 3886  wss 3888  c0 4258  {csn 4563   class class class wbr 5076  cfv 6435  (class class class)co 7277  Fincfn 8731  lecple 16967  joincjn 18027  Latclat 18147  Atomscatm 37274  AtLatcal 37275  HLchlt 37361  PSubSpcpsubsp 37507  +𝑃cpadd 37806  PClcpclN 37898  PSubClcpscN 37945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-riotaBAD 36964
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-undef 8087  df-en 8732  df-fin 8735  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37187  df-ol 37189  df-oml 37190  df-covers 37277  df-ats 37278  df-atl 37309  df-cvlat 37333  df-hlat 37362  df-psubsp 37514  df-pmap 37515  df-padd 37807  df-pclN 37899  df-polarityN 37914  df-psubclN 37946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator