Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   GIF version

Theorem pclfinclN 37218
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 37168 and also pclcmpatN 37169. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a 𝐴 = (Atoms‘𝐾)
pclfincl.c 𝑈 = (PCl‘𝐾)
pclfincl.s 𝑆 = (PSubCl‘𝐾)
Assertion
Ref Expression
pclfinclN ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)

Proof of Theorem pclfinclN
Dummy variables 𝑞 𝑝 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3978 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
21anbi2d 631 . . . . 5 (𝑥 = ∅ → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ ∅ ⊆ 𝐴)))
3 fveq2 6663 . . . . . 6 (𝑥 = ∅ → (𝑈𝑥) = (𝑈‘∅))
43eleq1d 2900 . . . . 5 (𝑥 = ∅ → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘∅) ∈ 𝑆))
52, 4imbi12d 348 . . . 4 (𝑥 = ∅ → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)))
6 sseq1 3978 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi2d 631 . . . . 5 (𝑥 = 𝑦 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑦𝐴)))
8 fveq2 6663 . . . . . 6 (𝑥 = 𝑦 → (𝑈𝑥) = (𝑈𝑦))
98eleq1d 2900 . . . . 5 (𝑥 = 𝑦 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑦) ∈ 𝑆))
107, 9imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)))
11 sseq1 3978 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1211anbi2d 631 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
13 fveq2 6663 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑈𝑥) = (𝑈‘(𝑦 ∪ {𝑧})))
1413eleq1d 2900 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
1512, 14imbi12d 348 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
16 sseq1 3978 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716anbi2d 631 . . . . 5 (𝑥 = 𝑋 → ((𝐾 ∈ HL ∧ 𝑥𝐴) ↔ (𝐾 ∈ HL ∧ 𝑋𝐴)))
18 fveq2 6663 . . . . . 6 (𝑥 = 𝑋 → (𝑈𝑥) = (𝑈𝑋))
1918eleq1d 2900 . . . . 5 (𝑥 = 𝑋 → ((𝑈𝑥) ∈ 𝑆 ↔ (𝑈𝑋) ∈ 𝑆))
2017, 19imbi12d 348 . . . 4 (𝑥 = 𝑋 → (((𝐾 ∈ HL ∧ 𝑥𝐴) → (𝑈𝑥) ∈ 𝑆) ↔ ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)))
21 pclfincl.c . . . . . . 7 𝑈 = (PCl‘𝐾)
2221pcl0N 37190 . . . . . 6 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
23 pclfincl.s . . . . . . 7 𝑆 = (PSubCl‘𝐾)
24230psubclN 37211 . . . . . 6 (𝐾 ∈ HL → ∅ ∈ 𝑆)
2522, 24eqeltrd 2916 . . . . 5 (𝐾 ∈ HL → (𝑈‘∅) ∈ 𝑆)
2625adantr 484 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ 𝐴) → (𝑈‘∅) ∈ 𝑆)
27 anass 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) ↔ (𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)))
28 vex 3483 . . . . . . . . . . 11 𝑧 ∈ V
2928snss 4703 . . . . . . . . . 10 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
3029anbi2i 625 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) ↔ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴))
31 unss 4146 . . . . . . . . 9 ((𝑦𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3230, 31bitri 278 . . . . . . . 8 ((𝑦𝐴𝑧𝐴) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3332anbi2i 625 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑦𝐴𝑧𝐴)) ↔ (𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
3427, 33bitr2i 279 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ↔ ((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴))
35 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 = ∅)
3635uneq1d 4124 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧}))
37 uncom 4115 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑧}) = ({𝑧} ∪ ∅)
38 un0 4327 . . . . . . . . . . . . . . 15 ({𝑧} ∪ ∅) = {𝑧}
3937, 38eqtri 2847 . . . . . . . . . . . . . 14 (∅ ∪ {𝑧}) = {𝑧}
4036, 39syl6eq 2875 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) = {𝑧})
4140fveq2d 6667 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = (𝑈‘{𝑧}))
42 simplrl 776 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
43 hlatl 36628 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
4442, 43syl 17 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ AtLat)
45 simprr 772 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
46 pclfincl.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
47 eqid 2824 . . . . . . . . . . . . . . 15 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4846, 47snatpsubN 37018 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → {𝑧} ∈ (PSubSp‘𝐾))
4944, 45, 48syl2anc 587 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ (PSubSp‘𝐾))
5047, 21pclidN 37164 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ {𝑧} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑧}) = {𝑧})
5142, 49, 50syl2anc 587 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘{𝑧}) = {𝑧})
5241, 51eqtrd 2859 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = {𝑧})
5346, 23atpsubclN 37213 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧𝐴) → {𝑧} ∈ 𝑆)
5442, 45, 53syl2anc 587 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ∈ 𝑆)
5552, 54eqeltrd 2916 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 = ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
5655exp43 440 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 = ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
57 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ HL)
5846, 21pclssidN 37163 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦𝐴) → 𝑦 ⊆ (𝑈𝑦))
5958ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ⊆ (𝑈𝑦))
60 unss1 4141 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑈𝑦) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦) ∪ {𝑧}))
62 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ∈ 𝑆)
6346, 23psubclssatN 37209 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆) → (𝑈𝑦) ⊆ 𝐴)
6457, 62, 63syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ⊆ 𝐴)
65 snssi 4725 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
6665ad2antll 728 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → {𝑧} ⊆ 𝐴)
67 eqid 2824 . . . . . . . . . . . . . . . . 17 (+𝑃𝐾) = (+𝑃𝐾)
6846, 67paddunssN 37076 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
6957, 64, 66, 68syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7061, 69sstrd 3963 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
7146, 67paddssat 37082 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑈𝑦) ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7257, 64, 66, 71syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴)
7346, 21pclssN 37162 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
7457, 70, 72, 73syl3anc 1368 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})))
75 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑧𝐴)
7646, 67, 23paddatclN 37217 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑈𝑦) ∈ 𝑆𝑧𝐴) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7757, 62, 75, 76syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆)
7847, 23psubclsubN 37208 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ 𝑆) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
7957, 77, 78syl2anc 587 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾))
8047, 21pclidN 37164 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ∈ (PSubSp‘𝐾)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8157, 79, 80syl2anc 587 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘((𝑈𝑦)(+𝑃𝐾){𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8274, 81sseqtrd 3993 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ⊆ ((𝑈𝑦)(+𝑃𝐾){𝑧}))
8357hllatd 36632 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝐾 ∈ Lat)
84 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦 ≠ ∅)
8546, 21pcl0bN 37191 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8685ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) = ∅ ↔ 𝑦 = ∅))
8786necon3bid 3058 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦) ≠ ∅ ↔ 𝑦 ≠ ∅))
8884, 87mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈𝑦) ≠ ∅)
89 eqid 2824 . . . . . . . . . . . . . . . . . 18 (le‘𝐾) = (le‘𝐾)
90 eqid 2824 . . . . . . . . . . . . . . . . . 18 (join‘𝐾) = (join‘𝐾)
9189, 90, 46, 67elpaddat 37072 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ (𝑈𝑦) ⊆ 𝐴𝑧𝐴) ∧ (𝑈𝑦) ≠ ∅) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
9283, 64, 75, 88, 91syl31anc 1370 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) ↔ (𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))))
93 simp1rl 1235 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ HL)
94933ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → 𝐾 ∈ HL)
9594adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝐾 ∈ HL)
96 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑤 ∈ (PSubSp‘𝐾))
97 simpl13 1247 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝐴)
98 unss 4146 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) ↔ (𝑦 ∪ {𝑧}) ⊆ 𝑤)
99 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑦𝑤)
10098, 99sylbir 238 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑦𝑤)
101100ad2antll 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑦𝑤)
102 simpl2 1189 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝 ∈ (𝑈𝑦))
10347, 21elpcliN 37161 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦𝑤𝑤 ∈ (PSubSp‘𝐾)) ∧ 𝑝 ∈ (𝑈𝑦)) → 𝑝𝑤)
10495, 101, 96, 102, 103syl31anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑝𝑤)
10528snss 4703 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑤 ↔ {𝑧} ⊆ 𝑤)
106105biimpri 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑧} ⊆ 𝑤𝑧𝑤)
107106adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑤 ∧ {𝑧} ⊆ 𝑤) → 𝑧𝑤)
10898, 107sylbir 238 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑧𝑤)
109108ad2antll 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑧𝑤)
110 simpl3 1190 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))
11189, 90, 46, 47psubspi2N 37016 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑤 ∈ (PSubSp‘𝐾) ∧ 𝑞𝐴) ∧ (𝑝𝑤𝑧𝑤𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧))) → 𝑞𝑤)
11295, 96, 97, 104, 109, 110, 111syl33anc 1382 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) ∧ 𝑝 ∈ (𝑈𝑦) ∧ 𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) ∧ (𝑤 ∈ (PSubSp‘𝐾) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝑤)) → 𝑞𝑤)
113112exp520 1354 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (𝑝 ∈ (𝑈𝑦) → (𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
114113rexlimdv 3275 . . . . . . . . . . . . . . . . . 18 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴) ∧ 𝑞𝐴) → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
1151143expia 1118 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞𝐴 → (∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))))
116115impd 414 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑞𝐴 ∧ ∃𝑝 ∈ (𝑈𝑦)𝑞(le‘𝐾)(𝑝(join‘𝐾)𝑧)) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
11792, 116sylbid 243 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → (𝑤 ∈ (PSubSp‘𝐾) → ((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤))))
118117ralrimdv 3183 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
119 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → 𝑦𝐴)
120119, 75jca 515 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦𝐴𝑧𝐴))
121120, 32sylib 221 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
122 vex 3483 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
12346, 47, 21, 122elpclN 37160 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
12457, 121, 123syl2anc 587 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧})) ↔ ∀𝑤 ∈ (PSubSp‘𝐾)((𝑦 ∪ {𝑧}) ⊆ 𝑤𝑞𝑤)))
125118, 124sylibrd 262 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑞 ∈ ((𝑈𝑦)(+𝑃𝐾){𝑧}) → 𝑞 ∈ (𝑈‘(𝑦 ∪ {𝑧}))))
126125ssrdv 3959 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → ((𝑈𝑦)(+𝑃𝐾){𝑧}) ⊆ (𝑈‘(𝑦 ∪ {𝑧})))
12782, 126eqssd 3970 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) = ((𝑈𝑦)(+𝑃𝐾){𝑧}))
128127, 77eqeltrd 2916 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) ∧ (𝐾 ∈ HL ∧ 𝑦𝐴)) ∧ ((𝑈𝑦) ∈ 𝑆𝑧𝐴)) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)
129128exp43 440 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝑦 ≠ ∅) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
13056, 129pm2.61dane 3101 . . . . . . . 8 (𝑦 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑦𝐴) → ((𝑈𝑦) ∈ 𝑆 → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
131130a2d 29 . . . . . . 7 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑧𝐴 → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))))
132131imp4b 425 . . . . . 6 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → (((𝐾 ∈ HL ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
13334, 132syl5bi 245 . . . . 5 ((𝑦 ∈ Fin ∧ ((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆)) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆))
134133ex 416 . . . 4 (𝑦 ∈ Fin → (((𝐾 ∈ HL ∧ 𝑦𝐴) → (𝑈𝑦) ∈ 𝑆) → ((𝐾 ∈ HL ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑈‘(𝑦 ∪ {𝑧})) ∈ 𝑆)))
1355, 10, 15, 20, 26, 134findcard2 8757 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆))
1361353impib 1113 . 2 ((𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
1371363coml 1124 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  cun 3917  wss 3919  c0 4276  {csn 4550   class class class wbr 5053  cfv 6345  (class class class)co 7151  Fincfn 8507  lecple 16574  joincjn 17556  Latclat 17657  Atomscatm 36531  AtLatcal 36532  HLchlt 36618  PSubSpcpsubsp 36764  +𝑃cpadd 37063  PClcpclN 37155  PSubClcpscN 37202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-riotaBAD 36221
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-undef 7937  df-1o 8100  df-er 8287  df-en 8508  df-fin 8511  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36444  df-ol 36446  df-oml 36447  df-covers 36534  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619  df-psubsp 36771  df-pmap 36772  df-padd 37064  df-pclN 37156  df-polarityN 37171  df-psubclN 37203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator