MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Structured version   Visualization version   GIF version

Theorem oewordri 8510
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))

Proof of Theorem oewordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
2 oveq2 7357 . . . . 5 (𝑥 = ∅ → (𝐵o 𝑥) = (𝐵o ∅))
31, 2sseq12d 3969 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o ∅) ⊆ (𝐵o ∅)))
4 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
5 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (𝐵o 𝑥) = (𝐵o 𝑦))
64, 5sseq12d 3969 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o 𝑦) ⊆ (𝐵o 𝑦)))
7 oveq2 7357 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
8 oveq2 7357 . . . . 5 (𝑥 = suc 𝑦 → (𝐵o 𝑥) = (𝐵o suc 𝑦))
97, 8sseq12d 3969 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦)))
10 oveq2 7357 . . . . 5 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
11 oveq2 7357 . . . . 5 (𝑥 = 𝐶 → (𝐵o 𝑥) = (𝐵o 𝐶))
1210, 11sseq12d 3969 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
13 onelon 6332 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
14 oe0 8440 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1513, 14syl 17 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) = 1o)
16 oe0 8440 . . . . . . 7 (𝐵 ∈ On → (𝐵o ∅) = 1o)
1716adantr 480 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐵o ∅) = 1o)
1815, 17eqtr4d 2767 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) = (𝐵o ∅))
19 eqimss 3994 . . . . 5 ((𝐴o ∅) = (𝐵o ∅) → (𝐴o ∅) ⊆ (𝐵o ∅))
2018, 19syl 17 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) ⊆ (𝐵o ∅))
21 simpl 482 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ On)
22 onelss 6349 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
2322imp 406 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴𝐵)
2413, 21, 23jca31 514 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵))
25 oecl 8455 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
26253adant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
27 oecl 8455 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o 𝑦) ∈ On)
28273adant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o 𝑦) ∈ On)
29 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
30 omwordri 8490 . . . . . . . . . . . . 13 (((𝐴o 𝑦) ∈ On ∧ (𝐵o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴)))
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴)))
3231imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦)) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴))
3332adantrl 716 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴))
34 omwordi 8489 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵o 𝑦) ∈ On) → (𝐴𝐵 → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵)))
3528, 34syld3an3 1411 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵)))
3635imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
3736adantrr 717 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
3833, 37sstrd 3946 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
39 oesuc 8445 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
40393adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4140adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
42 oesuc 8445 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
43423adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
4443adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
4538, 41, 443sstr4d 3991 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))
4645exp520 1358 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))))
4746com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))))
4847imp4c 423 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))
4924, 48syl5 34 . . . 4 (𝑦 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))
50 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
51 limelon 6372 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5250, 51mpan 690 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
53 0ellim 6371 . . . . . . . . . . 11 (Lim 𝑥 → ∅ ∈ 𝑥)
54 oe0m1 8439 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑o 𝑥) = ∅))
5554biimpa 476 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → (∅ ↑o 𝑥) = ∅)
5652, 53, 55syl2anc 584 . . . . . . . . . 10 (Lim 𝑥 → (∅ ↑o 𝑥) = ∅)
57 0ss 4351 . . . . . . . . . 10 ∅ ⊆ (𝐵o 𝑥)
5856, 57eqsstrdi 3980 . . . . . . . . 9 (Lim 𝑥 → (∅ ↑o 𝑥) ⊆ (𝐵o 𝑥))
59 oveq1 7356 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴o 𝑥) = (∅ ↑o 𝑥))
6059sseq1d 3967 . . . . . . . . 9 (𝐴 = ∅ → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (∅ ↑o 𝑥) ⊆ (𝐵o 𝑥)))
6158, 60imbitrrid 246 . . . . . . . 8 (𝐴 = ∅ → (Lim 𝑥 → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
6261adantl 481 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
6362a1dd 50 . . . . . 6 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
64 ss2iun 4960 . . . . . . . 8 (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → 𝑦𝑥 (𝐴o 𝑦) ⊆ 𝑦𝑥 (𝐵o 𝑦))
65 oelim 8452 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6650, 65mpanlr1 706 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6766an32s 652 . . . . . . . . . 10 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6867adantllr 719 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6921anim1i 615 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵 ∈ On ∧ Lim 𝑥))
70 ne0i 4292 . . . . . . . . . . . . . 14 (𝐴𝐵𝐵 ≠ ∅)
71 on0eln0 6364 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
7270, 71imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 ∈ On → (𝐴𝐵 → ∅ ∈ 𝐵))
7372imp 406 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐴𝐵) → ∅ ∈ 𝐵)
7473adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → ∅ ∈ 𝐵)
75 oelim 8452 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7650, 75mpanlr1 706 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7769, 74, 76syl2anc 584 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7877ad4ant24 754 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7968, 78sseq12d 3969 . . . . . . . 8 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ 𝑦𝑥 (𝐴o 𝑦) ⊆ 𝑦𝑥 (𝐵o 𝑦)))
8064, 79imbitrrid 246 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
8180ex 412 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
8263, 81oe0lem 8431 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
8313ancri 549 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)))
8482, 83syl11 33 . . . 4 (Lim 𝑥 → ((𝐵 ∈ On ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
853, 6, 9, 12, 20, 49, 84tfinds3 7798 . . 3 (𝐶 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
8685expd 415 . 2 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶))))
8786impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  wss 3903  c0 4284   ciun 4941  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349  1oc1o 8381   ·o comu 8386  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393  df-oexp 8394
This theorem is referenced by:  oeordsuc  8512  oege2  43290
  Copyright terms: Public domain W3C validator