MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Structured version   Visualization version   GIF version

Theorem oewordri 8556
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))

Proof of Theorem oewordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
2 oveq2 7395 . . . . 5 (𝑥 = ∅ → (𝐵o 𝑥) = (𝐵o ∅))
31, 2sseq12d 3980 . . . 4 (𝑥 = ∅ → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o ∅) ⊆ (𝐵o ∅)))
4 oveq2 7395 . . . . 5 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
5 oveq2 7395 . . . . 5 (𝑥 = 𝑦 → (𝐵o 𝑥) = (𝐵o 𝑦))
64, 5sseq12d 3980 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o 𝑦) ⊆ (𝐵o 𝑦)))
7 oveq2 7395 . . . . 5 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
8 oveq2 7395 . . . . 5 (𝑥 = suc 𝑦 → (𝐵o 𝑥) = (𝐵o suc 𝑦))
97, 8sseq12d 3980 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦)))
10 oveq2 7395 . . . . 5 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
11 oveq2 7395 . . . . 5 (𝑥 = 𝐶 → (𝐵o 𝑥) = (𝐵o 𝐶))
1210, 11sseq12d 3980 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
13 onelon 6357 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
14 oe0 8486 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) = 1o)
1513, 14syl 17 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) = 1o)
16 oe0 8486 . . . . . . 7 (𝐵 ∈ On → (𝐵o ∅) = 1o)
1716adantr 480 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐵o ∅) = 1o)
1815, 17eqtr4d 2767 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) = (𝐵o ∅))
19 eqimss 4005 . . . . 5 ((𝐴o ∅) = (𝐵o ∅) → (𝐴o ∅) ⊆ (𝐵o ∅))
2018, 19syl 17 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o ∅) ⊆ (𝐵o ∅))
21 simpl 482 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ On)
22 onelss 6374 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
2322imp 406 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴𝐵)
2413, 21, 23jca31 514 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵))
25 oecl 8501 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
26253adant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
27 oecl 8501 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o 𝑦) ∈ On)
28273adant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o 𝑦) ∈ On)
29 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
30 omwordri 8536 . . . . . . . . . . . . 13 (((𝐴o 𝑦) ∈ On ∧ (𝐵o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴)))
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴)))
3231imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦)) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴))
3332adantrl 716 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐴))
34 omwordi 8535 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵o 𝑦) ∈ On) → (𝐴𝐵 → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵)))
3528, 34syld3an3 1411 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵)))
3635imp 406 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
3736adantrr 717 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐵o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
3833, 37sstrd 3957 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → ((𝐴o 𝑦) ·o 𝐴) ⊆ ((𝐵o 𝑦) ·o 𝐵))
39 oesuc 8491 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
40393adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4140adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
42 oesuc 8491 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
43423adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
4443adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐵o suc 𝑦) = ((𝐵o 𝑦) ·o 𝐵))
4538, 41, 443sstr4d 4002 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴o 𝑦) ⊆ (𝐵o 𝑦))) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))
4645exp520 1358 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))))
4746com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))))
4847imp4c 423 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))
4924, 48syl5 34 . . . 4 (𝑦 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → ((𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o suc 𝑦) ⊆ (𝐵o suc 𝑦))))
50 vex 3451 . . . . . . . . . . . 12 𝑥 ∈ V
51 limelon 6397 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5250, 51mpan 690 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
53 0ellim 6396 . . . . . . . . . . 11 (Lim 𝑥 → ∅ ∈ 𝑥)
54 oe0m1 8485 . . . . . . . . . . . 12 (𝑥 ∈ On → (∅ ∈ 𝑥 ↔ (∅ ↑o 𝑥) = ∅))
5554biimpa 476 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → (∅ ↑o 𝑥) = ∅)
5652, 53, 55syl2anc 584 . . . . . . . . . 10 (Lim 𝑥 → (∅ ↑o 𝑥) = ∅)
57 0ss 4363 . . . . . . . . . 10 ∅ ⊆ (𝐵o 𝑥)
5856, 57eqsstrdi 3991 . . . . . . . . 9 (Lim 𝑥 → (∅ ↑o 𝑥) ⊆ (𝐵o 𝑥))
59 oveq1 7394 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴o 𝑥) = (∅ ↑o 𝑥))
6059sseq1d 3978 . . . . . . . . 9 (𝐴 = ∅ → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ (∅ ↑o 𝑥) ⊆ (𝐵o 𝑥)))
6158, 60imbitrrid 246 . . . . . . . 8 (𝐴 = ∅ → (Lim 𝑥 → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
6261adantl 481 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
6362a1dd 50 . . . . . 6 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
64 ss2iun 4974 . . . . . . . 8 (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → 𝑦𝑥 (𝐴o 𝑦) ⊆ 𝑦𝑥 (𝐵o 𝑦))
65 oelim 8498 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6650, 65mpanlr1 706 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6766an32s 652 . . . . . . . . . 10 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6867adantllr 719 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
6921anim1i 615 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵 ∈ On ∧ Lim 𝑥))
70 ne0i 4304 . . . . . . . . . . . . . 14 (𝐴𝐵𝐵 ≠ ∅)
71 on0eln0 6389 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
7270, 71imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 ∈ On → (𝐴𝐵 → ∅ ∈ 𝐵))
7372imp 406 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐴𝐵) → ∅ ∈ 𝐵)
7473adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → ∅ ∈ 𝐵)
75 oelim 8498 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7650, 75mpanlr1 706 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7769, 74, 76syl2anc 584 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐴𝐵) ∧ Lim 𝑥) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7877ad4ant24 754 . . . . . . . . 9 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵o 𝑥) = 𝑦𝑥 (𝐵o 𝑦))
7968, 78sseq12d 3980 . . . . . . . 8 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → ((𝐴o 𝑥) ⊆ (𝐵o 𝑥) ↔ 𝑦𝑥 (𝐴o 𝑦) ⊆ 𝑦𝑥 (𝐵o 𝑦)))
8064, 79imbitrrid 246 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥)))
8180ex 412 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
8263, 81oe0lem 8477 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
8313ancri 549 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)))
8482, 83syl11 33 . . . 4 (Lim 𝑥 → ((𝐵 ∈ On ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴o 𝑦) ⊆ (𝐵o 𝑦) → (𝐴o 𝑥) ⊆ (𝐵o 𝑥))))
853, 6, 9, 12, 20, 49, 84tfinds3 7841 . . 3 (𝐶 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
8685expd 415 . 2 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶))))
8786impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴o 𝐶) ⊆ (𝐵o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296   ciun 4955  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  1oc1o 8427   ·o comu 8432  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oeordsuc  8558  oege2  43296
  Copyright terms: Public domain W3C validator