MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5o Structured version   Visualization version   GIF version

Theorem exp5o 1353
Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
exp5o.1 ((𝜑𝜓𝜒) → ((𝜃𝜏) → 𝜂))
Assertion
Ref Expression
exp5o (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Proof of Theorem exp5o
StepHypRef Expression
1 exp5o.1 . . 3 ((𝜑𝜓𝜒) → ((𝜃𝜏) → 𝜂))
21expd 415 . 2 ((𝜑𝜓𝜒) → (𝜃 → (𝜏𝜂)))
323exp 1117 1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  exp520  1355  bndndx  12162  elicc3  34433  bgoldbtbndlem3  45147
  Copyright terms: Public domain W3C validator