![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bndndx | Structured version Visualization version GIF version |
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
Ref | Expression |
---|---|
bndndx | ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arch 11704 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘) | |
2 | nnre 11447 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
3 | lelttr 10531 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 < 𝑘)) | |
4 | ltle 10529 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) | |
5 | 4 | 3adant2 1111 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) |
6 | 3, 5 | syld 47 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 ≤ 𝑘)) |
7 | 6 | exp5o 1335 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
8 | 7 | com3l 89 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
9 | 8 | imp4b 414 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))) |
10 | 9 | com23 86 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
11 | 2, 10 | sylan2 583 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
12 | 11 | reximdva 3219 | . . . 4 ⊢ (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
13 | 1, 12 | mpd 15 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘)) |
14 | r19.35 3282 | . . 3 ⊢ (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) | |
15 | 13, 14 | sylib 210 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) |
16 | 15 | rexlimiv 3225 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 ∀wral 3088 ∃wrex 3089 class class class wbr 4929 ℝcr 10334 < clt 10474 ≤ cle 10475 ℕcn 11439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |