Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem3 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem3 45147
Description: Lemma 3 for bgoldbtbnd 45149. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
bgoldbtbndlem3.s 𝑆 = (𝑋 − (𝐹𝐼))
Assertion
Ref Expression
bgoldbtbndlem3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem3
StepHypRef Expression
1 fzo0ss1 13345 . . . . . 6 (1..^𝐷) ⊆ (0..^𝐷)
21sseli 3913 . . . . 5 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
3 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
4 fveq2 6756 . . . . . . . 8 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
54eleq1d 2823 . . . . . . 7 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
6 fvoveq1 7278 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
76, 4oveq12d 7273 . . . . . . . 8 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
87breq1d 5080 . . . . . . 7 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
97breq2d 5082 . . . . . . 7 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
105, 8, 93anbi123d 1434 . . . . . 6 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1110rspcv 3547 . . . . 5 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
122, 3, 11syl2imc 41 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1312a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))))
14133imp 1109 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
15 bgoldbtbndlem3.s . . . . 5 𝑆 = (𝑋 − (𝐹𝐼))
16 simp2 1135 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
17 oddprmALTV 45027 . . . . . . . . 9 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ Odd )
18173ad2ant1 1131 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ Odd )
1916, 18anim12i 612 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
2019adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
21 omoeALTV 45025 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ) → (𝑋 − (𝐹𝐼)) ∈ Even )
2220, 21syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) ∈ Even )
2315, 22eqeltrid 2843 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 ∈ Even )
24 eldifi 4057 . . . . . . . . . . 11 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
25 prmz 16308 . . . . . . . . . . . 12 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
2625zred 12355 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
27 fzofzp1 13412 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → (𝐼 + 1) ∈ (1...𝐷))
28 elfzo2 13319 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
29 1zzd 12281 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ∈ ℤ)
30 simp2 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ ℤ)
31 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
32 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ ℤ → 1 ∈ ℝ)
33 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
34 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
35 leltletr 44673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3632, 33, 34, 35syl3an 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3736exp5o 1353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℤ → (𝐼 ∈ ℤ → (𝐷 ∈ ℤ → (1 ≤ 𝐼 → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
3837com34 91 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℤ → (𝐼 ∈ ℤ → (1 ≤ 𝐼 → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
39383imp 1109 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
4031, 39sylbi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ (ℤ‘1) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
41403imp 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ≤ 𝐷)
42 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 1 ≤ 𝐷))
4329, 30, 41, 42syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ (ℤ‘1))
4428, 43sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ (ℤ‘1))
45 fzisfzounsn 13427 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℤ‘1) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝐷) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4746eleq2d 2824 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ (𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷})))
48 elun 4079 . . . . . . . . . . . . . . . . . 18 ((𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷}) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}))
4947, 48bitrdi 286 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷})))
50 bgoldbtbnd.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ (ℤ‘3))
51 eluzge3nn 12559 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℕ)
5352ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐷 ∈ ℕ)
54 bgoldbtbnd.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ (RePart‘𝐷))
5554ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐹 ∈ (RePart‘𝐷))
56 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐼 + 1) ∈ (1..^𝐷))
5753, 55, 56iccpartipre 44761 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
5857exp31 419 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
59 elsni 4575 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ {𝐷} → (𝐼 + 1) = 𝐷)
60 bgoldbtbnd.r . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐷) ∈ ℝ)
6160ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹𝐷) ∈ ℝ)
62 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 + 1) = 𝐷 → (𝐹‘(𝐼 + 1)) = (𝐹𝐷))
6362eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 + 1) = 𝐷 → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6561, 64mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
6665ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) = 𝐷 → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6759, 66syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
6958, 68jaod 855 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → (((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7049, 69sylbid 239 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7127, 70mpd 15 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
7271com12 32 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
73723impia 1115 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
74 bgoldbtbnd.n . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ11))
75 eluzelre 12522 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
77 oddz 44971 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
7877zred 12355 . . . . . . . . . . . . . . 15 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
79 rexr 10952 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝐼 + 1)) ∈ ℝ → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
80 rexr 10952 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐼) ∈ ℝ → (𝐹𝐼) ∈ ℝ*)
8179, 80anim12ci 613 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
8281adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
83 elico1 13051 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
85 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 ∈ ℝ)
86 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
87 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ∈ ℝ)
88 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 < (𝐹‘(𝐼 + 1)))
8985, 86, 87, 88ltsub1dd 11517 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
90 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑋 ∈ ℝ)
91 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
9290, 91resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9486, 87resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ)
95 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑁 ∈ ℝ)
96 4re 11987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ∈ ℝ
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 4 ∈ ℝ)
9895, 97resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑁 − 4) ∈ ℝ)
99 lttr 10982 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10093, 94, 98, 99syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10189, 100mpand 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
102101impr 454 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4))
103 4pos 12010 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 4
10496a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 4 ∈ ℝ)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 𝑁 ∈ ℝ)
106104, 105ltsubposd 11491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 < 4 ↔ (𝑁 − 4) < 𝑁))
107103, 106mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑁 − 4) < 𝑁)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) < 𝑁)
109108adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑁 − 4) < 𝑁)
110 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑁 ∈ ℝ)
11196a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 4 ∈ ℝ)
112110, 111resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) ∈ ℝ)
113 lttr 10982 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
11492, 112, 110, 113syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
116102, 109, 115mp2and 695 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < 𝑁)
117116exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
118117com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1191183ad2ant3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
120119com12 32 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
12184, 120sylbid 239 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
122121com23 86 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
123122exp32 420 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
124123com34 91 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12576, 78, 124syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
1261253adant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12773, 126mpd 15 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
128127com13 88 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
12924, 26, 1283syl 18 . . . . . . . . . 10 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
130129imp 406 . . . . . . . . 9 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1311303adant3 1130 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
132131impcom 407 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))
133132imp 406 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ 𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1)))) → (𝑋 − (𝐹𝐼)) < 𝑁)
134133adantrr 713 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) < 𝑁)
13515, 134eqbrtrid 5105 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 < 𝑁)
136 simprr 769 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 4 < 𝑆)
13723, 135, 1363jca 1126 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
138137ex 412 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
13914, 138mpdan 683 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  3c3 11959  4c4 11960  7c7 11963  cz 12249  cdc 12366  cuz 12511  [,)cico 13010  ...cfz 13168  ..^cfzo 13311  cprime 16304  RePartciccp 44753   Even ceven 44964   Odd codd 44965   GoldbachEven cgbe 45085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-iccp 44754  df-even 44966  df-odd 44967
This theorem is referenced by:  bgoldbtbnd  45149
  Copyright terms: Public domain W3C validator