Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem3 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem3 47415
Description: Lemma 3 for bgoldbtbnd 47417. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
bgoldbtbndlem3.s 𝑆 = (𝑋 − (𝐹𝐼))
Assertion
Ref Expression
bgoldbtbndlem3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem3
StepHypRef Expression
1 fzo0ss1 13710 . . . . . 6 (1..^𝐷) ⊆ (0..^𝐷)
21sseli 3974 . . . . 5 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
3 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
4 fveq2 6893 . . . . . . . 8 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
54eleq1d 2811 . . . . . . 7 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
6 fvoveq1 7439 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
76, 4oveq12d 7434 . . . . . . . 8 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
87breq1d 5155 . . . . . . 7 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
97breq2d 5157 . . . . . . 7 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
105, 8, 93anbi123d 1433 . . . . . 6 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1110rspcv 3603 . . . . 5 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
122, 3, 11syl2imc 41 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1312a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))))
14133imp 1108 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
15 bgoldbtbndlem3.s . . . . 5 𝑆 = (𝑋 − (𝐹𝐼))
16 simp2 1134 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
17 oddprmALTV 47295 . . . . . . . . 9 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ Odd )
18173ad2ant1 1130 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ Odd )
1916, 18anim12i 611 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
2019adantr 479 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
21 omoeALTV 47293 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ) → (𝑋 − (𝐹𝐼)) ∈ Even )
2220, 21syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) ∈ Even )
2315, 22eqeltrid 2830 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 ∈ Even )
24 eldifi 4123 . . . . . . . . . . 11 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
25 prmz 16671 . . . . . . . . . . . 12 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
2625zred 12712 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
27 fzofzp1 13778 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → (𝐼 + 1) ∈ (1...𝐷))
28 elfzo2 13683 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
29 1zzd 12639 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ∈ ℤ)
30 simp2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ ℤ)
31 eluz2 12874 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
32 zre 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ ℤ → 1 ∈ ℝ)
33 zre 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
34 zre 12608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
35 leltletr 11346 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3632, 33, 34, 35syl3an 1157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3736exp5o 1352 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℤ → (𝐼 ∈ ℤ → (𝐷 ∈ ℤ → (1 ≤ 𝐼 → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
3837com34 91 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℤ → (𝐼 ∈ ℤ → (1 ≤ 𝐼 → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
39383imp 1108 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
4031, 39sylbi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ (ℤ‘1) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
41403imp 1108 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ≤ 𝐷)
42 eluz2 12874 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 1 ≤ 𝐷))
4329, 30, 41, 42syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ (ℤ‘1))
4428, 43sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ (ℤ‘1))
45 fzisfzounsn 13793 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℤ‘1) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝐷) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4746eleq2d 2812 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ (𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷})))
48 elun 4145 . . . . . . . . . . . . . . . . . 18 ((𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷}) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}))
4947, 48bitrdi 286 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷})))
50 bgoldbtbnd.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ (ℤ‘3))
51 eluzge3nn 12920 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℕ)
5352ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐷 ∈ ℕ)
54 bgoldbtbnd.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ (RePart‘𝐷))
5554ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐹 ∈ (RePart‘𝐷))
56 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐼 + 1) ∈ (1..^𝐷))
5753, 55, 56iccpartipre 47029 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
5857exp31 418 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
59 elsni 4640 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ {𝐷} → (𝐼 + 1) = 𝐷)
60 bgoldbtbnd.r . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐷) ∈ ℝ)
6160ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹𝐷) ∈ ℝ)
62 fveq2 6893 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 + 1) = 𝐷 → (𝐹‘(𝐼 + 1)) = (𝐹𝐷))
6362eleq1d 2811 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 + 1) = 𝐷 → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6463adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6561, 64mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
6665ex 411 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) = 𝐷 → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6759, 66syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
6958, 68jaod 857 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → (((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7049, 69sylbid 239 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7127, 70mpd 15 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
7271com12 32 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
73723impia 1114 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
74 bgoldbtbnd.n . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ11))
75 eluzelre 12879 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
77 oddz 47239 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
7877zred 12712 . . . . . . . . . . . . . . 15 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
79 rexr 11301 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝐼 + 1)) ∈ ℝ → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
80 rexr 11301 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐼) ∈ ℝ → (𝐹𝐼) ∈ ℝ*)
8179, 80anim12ci 612 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
8281adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
83 elico1 13415 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
85 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 ∈ ℝ)
86 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
87 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ∈ ℝ)
88 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 < (𝐹‘(𝐼 + 1)))
8985, 86, 87, 88ltsub1dd 11867 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
90 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑋 ∈ ℝ)
91 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
9290, 91resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9392adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9486, 87resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ)
95 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑁 ∈ ℝ)
96 4re 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ∈ ℝ
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 4 ∈ ℝ)
9895, 97resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑁 − 4) ∈ ℝ)
99 lttr 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10093, 94, 98, 99syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10189, 100mpand 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
102101impr 453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4))
103 4pos 12365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 4
10496a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 4 ∈ ℝ)
105 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 𝑁 ∈ ℝ)
106104, 105ltsubposd 11841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 < 4 ↔ (𝑁 − 4) < 𝑁))
107103, 106mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑁 − 4) < 𝑁)
108107adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) < 𝑁)
109108adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑁 − 4) < 𝑁)
110 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑁 ∈ ℝ)
11196a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 4 ∈ ℝ)
112110, 111resubcld 11683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) ∈ ℝ)
113 lttr 11331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
11492, 112, 110, 113syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
115114adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
116102, 109, 115mp2and 697 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < 𝑁)
117116exp32 419 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
118117com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1191183ad2ant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
120119com12 32 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
12184, 120sylbid 239 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
122121com23 86 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
123122exp32 419 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
124123com34 91 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12576, 78, 124syl2an 594 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
1261253adant3 1129 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12773, 126mpd 15 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
128127com13 88 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
12924, 26, 1283syl 18 . . . . . . . . . 10 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
130129imp 405 . . . . . . . . 9 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1311303adant3 1129 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
132131impcom 406 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))
133132imp 405 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ 𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1)))) → (𝑋 − (𝐹𝐼)) < 𝑁)
134133adantrr 715 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) < 𝑁)
13515, 134eqbrtrid 5180 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 < 𝑁)
136 simprr 771 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 4 < 𝑆)
13723, 135, 1363jca 1125 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
138137ex 411 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
13914, 138mpdan 685 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cdif 3943  cun 3944  {csn 4623   class class class wbr 5145  cfv 6546  (class class class)co 7416  cr 11148  0cc0 11149  1c1 11150   + caddc 11152  *cxr 11288   < clt 11289  cle 11290  cmin 11485  cn 12258  2c2 12313  3c3 12314  4c4 12315  7c7 12318  cz 12604  cdc 12723  cuz 12868  [,)cico 13374  ...cfz 13532  ..^cfzo 13675  cprime 16667  RePartciccp 47021   Even ceven 47232   Odd codd 47233   GoldbachEven cgbe 47353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-ico 13378  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-prm 16668  df-iccp 47022  df-even 47234  df-odd 47235
This theorem is referenced by:  bgoldbtbnd  47417
  Copyright terms: Public domain W3C validator