Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem3 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem3 47681
Description: Lemma 3 for bgoldbtbnd 47683. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
bgoldbtbndlem3.s 𝑆 = (𝑋 − (𝐹𝐼))
Assertion
Ref Expression
bgoldbtbndlem3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem3
StepHypRef Expression
1 fzo0ss1 13746 . . . . . 6 (1..^𝐷) ⊆ (0..^𝐷)
21sseli 4004 . . . . 5 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
3 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
4 fveq2 6920 . . . . . . . 8 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
54eleq1d 2829 . . . . . . 7 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
6 fvoveq1 7471 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
76, 4oveq12d 7466 . . . . . . . 8 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
87breq1d 5176 . . . . . . 7 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
97breq2d 5178 . . . . . . 7 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
105, 8, 93anbi123d 1436 . . . . . 6 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1110rspcv 3631 . . . . 5 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
122, 3, 11syl2imc 41 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1312a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))))
14133imp 1111 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
15 bgoldbtbndlem3.s . . . . 5 𝑆 = (𝑋 − (𝐹𝐼))
16 simp2 1137 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
17 oddprmALTV 47561 . . . . . . . . 9 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ Odd )
18173ad2ant1 1133 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ Odd )
1916, 18anim12i 612 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
2019adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
21 omoeALTV 47559 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ) → (𝑋 − (𝐹𝐼)) ∈ Even )
2220, 21syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) ∈ Even )
2315, 22eqeltrid 2848 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 ∈ Even )
24 eldifi 4154 . . . . . . . . . . 11 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
25 prmz 16722 . . . . . . . . . . . 12 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
2625zred 12747 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
27 fzofzp1 13814 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → (𝐼 + 1) ∈ (1...𝐷))
28 elfzo2 13719 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
29 1zzd 12674 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ∈ ℤ)
30 simp2 1137 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ ℤ)
31 eluz2 12909 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
32 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ ℤ → 1 ∈ ℝ)
33 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
34 zre 12643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
35 leltletr 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3632, 33, 34, 35syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3736exp5o 1355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℤ → (𝐼 ∈ ℤ → (𝐷 ∈ ℤ → (1 ≤ 𝐼 → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
3837com34 91 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℤ → (𝐼 ∈ ℤ → (1 ≤ 𝐼 → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
39383imp 1111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
4031, 39sylbi 217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ (ℤ‘1) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
41403imp 1111 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ≤ 𝐷)
42 eluz2 12909 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 1 ≤ 𝐷))
4329, 30, 41, 42syl3anbrc 1343 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ (ℤ‘1))
4428, 43sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ (ℤ‘1))
45 fzisfzounsn 13829 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℤ‘1) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝐷) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4746eleq2d 2830 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ (𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷})))
48 elun 4176 . . . . . . . . . . . . . . . . . 18 ((𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷}) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}))
4947, 48bitrdi 287 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷})))
50 bgoldbtbnd.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ (ℤ‘3))
51 eluzge3nn 12955 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℕ)
5352ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐷 ∈ ℕ)
54 bgoldbtbnd.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ (RePart‘𝐷))
5554ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐹 ∈ (RePart‘𝐷))
56 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐼 + 1) ∈ (1..^𝐷))
5753, 55, 56iccpartipre 47295 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
5857exp31 419 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
59 elsni 4665 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ {𝐷} → (𝐼 + 1) = 𝐷)
60 bgoldbtbnd.r . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐷) ∈ ℝ)
6160ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹𝐷) ∈ ℝ)
62 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 + 1) = 𝐷 → (𝐹‘(𝐼 + 1)) = (𝐹𝐷))
6362eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 + 1) = 𝐷 → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6561, 64mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
6665ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) = 𝐷 → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6759, 66syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
6958, 68jaod 858 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → (((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7049, 69sylbid 240 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7127, 70mpd 15 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
7271com12 32 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
73723impia 1117 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
74 bgoldbtbnd.n . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ11))
75 eluzelre 12914 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
77 oddz 47505 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
7877zred 12747 . . . . . . . . . . . . . . 15 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
79 rexr 11336 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝐼 + 1)) ∈ ℝ → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
80 rexr 11336 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐼) ∈ ℝ → (𝐹𝐼) ∈ ℝ*)
8179, 80anim12ci 613 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
8281adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
83 elico1 13450 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
85 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 ∈ ℝ)
86 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
87 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ∈ ℝ)
88 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 < (𝐹‘(𝐼 + 1)))
8985, 86, 87, 88ltsub1dd 11902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
90 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑋 ∈ ℝ)
91 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
9290, 91resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9486, 87resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ)
95 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑁 ∈ ℝ)
96 4re 12377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ∈ ℝ
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 4 ∈ ℝ)
9895, 97resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑁 − 4) ∈ ℝ)
99 lttr 11366 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10093, 94, 98, 99syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10189, 100mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
102101impr 454 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4))
103 4pos 12400 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 4
10496a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 4 ∈ ℝ)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 𝑁 ∈ ℝ)
106104, 105ltsubposd 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 < 4 ↔ (𝑁 − 4) < 𝑁))
107103, 106mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑁 − 4) < 𝑁)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) < 𝑁)
109108adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑁 − 4) < 𝑁)
110 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑁 ∈ ℝ)
11196a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 4 ∈ ℝ)
112110, 111resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) ∈ ℝ)
113 lttr 11366 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
11492, 112, 110, 113syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
116102, 109, 115mp2and 698 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < 𝑁)
117116exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
118117com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1191183ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
120119com12 32 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
12184, 120sylbid 240 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
122121com23 86 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
123122exp32 420 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
124123com34 91 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12576, 78, 124syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
1261253adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12773, 126mpd 15 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
128127com13 88 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
12924, 26, 1283syl 18 . . . . . . . . . 10 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
130129imp 406 . . . . . . . . 9 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1311303adant3 1132 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
132131impcom 407 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))
133132imp 406 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ 𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1)))) → (𝑋 − (𝐹𝐼)) < 𝑁)
134133adantrr 716 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) < 𝑁)
13515, 134eqbrtrid 5201 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 < 𝑁)
136 simprr 772 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 4 < 𝑆)
13723, 135, 1363jca 1128 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
138137ex 412 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
13914, 138mpdan 686 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  4c4 12350  7c7 12353  cz 12639  cdc 12758  cuz 12903  [,)cico 13409  ...cfz 13567  ..^cfzo 13711  cprime 16718  RePartciccp 47287   Even ceven 47498   Odd codd 47499   GoldbachEven cgbe 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719  df-iccp 47288  df-even 47500  df-odd 47501
This theorem is referenced by:  bgoldbtbnd  47683
  Copyright terms: Public domain W3C validator