Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version |
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 413 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | 3expd 1352 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anassrs 1359 pm2.61da3ne 3035 po2nr 5518 fliftfund 7193 frfi 9068 fin33i 10134 axdc3lem4 10218 iscatd 17391 isfuncd 17589 isposd 18050 pospropd 18054 imasmnd2 18431 grpinveu 18623 grpid 18624 grpasscan1 18647 imasgrp2 18699 dmdprdd 19611 pgpfac1lem5 19691 imasring 19867 islmodd 20138 lmodvsghm 20193 islssd 20206 islmhm2 20309 mulgghm2 20707 isphld 20868 psrbaglefiOLD 21145 riinopn 22066 ordtbaslem 22348 subbascn 22414 haust1 22512 isnrm2 22518 isnrm3 22519 lmmo 22540 nllyidm 22649 tx1stc 22810 filin 23014 filtop 23015 isfil2 23016 infil 23023 fgfil 23035 isufil2 23068 ufileu 23079 filufint 23080 flimopn 23135 flimrest 23143 isxmetd 23488 met2ndc 23688 icccmplem2 23995 lmmbr 24431 cfil3i 24442 equivcfil 24472 bcthlem5 24501 volfiniun 24720 dvidlem 25088 ulmdvlem3 25570 ax5seg 27315 axcontlem4 27344 axcont 27353 grporcan 28889 grpoinveu 28890 grpoid 28891 cvxpconn 33213 cvxsconn 33214 mclsax 33540 mclsppslem 33554 broutsideof2 34433 nn0prpwlem 34520 fgmin 34568 poimirlem27 35813 poimirlem29 35815 poimirlem31 35817 cntotbnd 35963 heiborlem6 35983 heiborlem10 35987 rngonegmn1l 36108 rngonegmn1r 36109 rngoneglmul 36110 rngonegrmul 36111 crngm23 36169 prnc 36234 pridlc3 36240 dmncan1 36243 lsmsat 37029 eqlkr 37120 llncmp 37543 2at0mat0 37546 llncvrlpln 37579 lplncmp 37583 lplnexllnN 37585 lplncvrlvol 37637 lvolcmp 37638 linepsubN 37773 pmapsub 37789 paddasslem16 37856 pmodlem2 37868 lhp2lt 38022 ltrneq2 38169 cdlemf2 38583 cdlemk34 38931 cdlemn11pre 39231 dihord2pre 39246 |
Copyright terms: Public domain | W3C validator |