| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3021 po2nr 5575 fliftfund 7306 frfi 9293 fin33i 10383 axdc3lem4 10467 iscatd 17685 isfuncd 17878 isposd 18334 pospropd 18337 imasmnd2 18752 grpinveu 18957 grpid 18958 grpasscan1 18984 imasgrp2 19038 dmdprdd 19982 pgpfac1lem5 20062 imasrng 20137 imasring 20290 islmodd 20823 lmodvsghm 20880 islssd 20892 islmhm2 20996 mulgghm2 21437 isphld 21614 riinopn 22846 ordtbaslem 23126 subbascn 23192 haust1 23290 isnrm2 23296 isnrm3 23297 lmmo 23318 nllyidm 23427 tx1stc 23588 filin 23792 filtop 23793 isfil2 23794 infil 23801 fgfil 23813 isufil2 23846 ufileu 23857 filufint 23858 flimopn 23913 flimrest 23921 isxmetd 24265 met2ndc 24462 icccmplem2 24763 lmmbr 25210 cfil3i 25221 equivcfil 25251 bcthlem5 25280 volfiniun 25500 dvidlem 25868 ulmdvlem3 26363 ax5seg 28917 axcontlem4 28946 axcont 28955 grporcan 30499 grpoinveu 30500 grpoid 30501 cvxpconn 35264 cvxsconn 35265 mclsax 35591 mclsppslem 35605 r1peuqusdeg1 35665 broutsideof2 36140 nn0prpwlem 36340 fgmin 36388 poimirlem27 37671 poimirlem29 37673 poimirlem31 37675 cntotbnd 37820 heiborlem6 37840 heiborlem10 37844 rngonegmn1l 37965 rngonegmn1r 37966 rngoneglmul 37967 rngonegrmul 37968 crngm23 38026 prnc 38091 pridlc3 38097 dmncan1 38100 lsmsat 39026 eqlkr 39117 llncmp 39541 2at0mat0 39544 llncvrlpln 39577 lplncmp 39581 lplnexllnN 39583 lplncvrlvol 39635 lvolcmp 39636 linepsubN 39771 pmapsub 39787 paddasslem16 39854 pmodlem2 39866 lhp2lt 40020 ltrneq2 40167 cdlemf2 40581 cdlemk34 40929 cdlemn11pre 41229 dihord2pre 41244 onexoegt 43268 clnbgrssedg 47854 clnbgrgrimlem 47946 grimgrtri 47961 |
| Copyright terms: Public domain | W3C validator |