| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3014 po2nr 5545 fliftfund 7254 frfi 9190 fin33i 10282 axdc3lem4 10366 iscatd 17598 isfuncd 17791 isposd 18247 pospropd 18250 imasmnd2 18667 grpinveu 18872 grpid 18873 grpasscan1 18899 imasgrp2 18953 dmdprdd 19899 pgpfac1lem5 19979 imasrng 20081 imasring 20234 islmodd 20788 lmodvsghm 20845 islssd 20857 islmhm2 20961 mulgghm2 21402 isphld 21580 riinopn 22812 ordtbaslem 23092 subbascn 23158 haust1 23256 isnrm2 23262 isnrm3 23263 lmmo 23284 nllyidm 23393 tx1stc 23554 filin 23758 filtop 23759 isfil2 23760 infil 23767 fgfil 23779 isufil2 23812 ufileu 23823 filufint 23824 flimopn 23879 flimrest 23887 isxmetd 24231 met2ndc 24428 icccmplem2 24729 lmmbr 25175 cfil3i 25186 equivcfil 25216 bcthlem5 25245 volfiniun 25465 dvidlem 25833 ulmdvlem3 26328 ax5seg 28902 axcontlem4 28931 axcont 28940 grporcan 30481 grpoinveu 30482 grpoid 30483 cvxpconn 35234 cvxsconn 35235 mclsax 35561 mclsppslem 35575 r1peuqusdeg1 35635 broutsideof2 36115 nn0prpwlem 36315 fgmin 36363 poimirlem27 37646 poimirlem29 37648 poimirlem31 37650 cntotbnd 37795 heiborlem6 37815 heiborlem10 37819 rngonegmn1l 37940 rngonegmn1r 37941 rngoneglmul 37942 rngonegrmul 37943 crngm23 38001 prnc 38066 pridlc3 38072 dmncan1 38075 lsmsat 39006 eqlkr 39097 llncmp 39521 2at0mat0 39524 llncvrlpln 39557 lplncmp 39561 lplnexllnN 39563 lplncvrlvol 39615 lvolcmp 39616 linepsubN 39751 pmapsub 39767 paddasslem16 39834 pmodlem2 39846 lhp2lt 40000 ltrneq2 40147 cdlemf2 40561 cdlemk34 40909 cdlemn11pre 41209 dihord2pre 41224 onexoegt 43237 clnbgrssedg 47845 clnbgrgrimlem 47937 grimgrtri 47953 |
| Copyright terms: Public domain | W3C validator |