Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version |
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | 3expd 1351 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anassrs 1358 pm2.61da3ne 3033 po2nr 5508 fliftfund 7164 frfi 8989 fin33i 10056 axdc3lem4 10140 iscatd 17299 isfuncd 17496 isposd 17956 pospropd 17960 imasmnd2 18337 grpinveu 18529 grpid 18530 grpasscan1 18553 imasgrp2 18605 dmdprdd 19517 pgpfac1lem5 19597 imasring 19773 islmodd 20044 lmodvsghm 20099 islssd 20112 islmhm2 20215 mulgghm2 20610 isphld 20771 psrbaglefiOLD 21046 riinopn 21965 ordtbaslem 22247 subbascn 22313 haust1 22411 isnrm2 22417 isnrm3 22418 lmmo 22439 nllyidm 22548 tx1stc 22709 filin 22913 filtop 22914 isfil2 22915 infil 22922 fgfil 22934 isufil2 22967 ufileu 22978 filufint 22979 flimopn 23034 flimrest 23042 isxmetd 23387 met2ndc 23585 icccmplem2 23892 lmmbr 24327 cfil3i 24338 equivcfil 24368 bcthlem5 24397 volfiniun 24616 dvidlem 24984 ulmdvlem3 25466 ax5seg 27209 axcontlem4 27238 axcont 27247 grporcan 28781 grpoinveu 28782 grpoid 28783 cvxpconn 33104 cvxsconn 33105 mclsax 33431 mclsppslem 33445 broutsideof2 34351 nn0prpwlem 34438 fgmin 34486 poimirlem27 35731 poimirlem29 35733 poimirlem31 35735 cntotbnd 35881 heiborlem6 35901 heiborlem10 35905 rngonegmn1l 36026 rngonegmn1r 36027 rngoneglmul 36028 rngonegrmul 36029 crngm23 36087 prnc 36152 pridlc3 36158 dmncan1 36161 lsmsat 36949 eqlkr 37040 llncmp 37463 2at0mat0 37466 llncvrlpln 37499 lplncmp 37503 lplnexllnN 37505 lplncvrlvol 37557 lvolcmp 37558 linepsubN 37693 pmapsub 37709 paddasslem16 37776 pmodlem2 37788 lhp2lt 37942 ltrneq2 38089 cdlemf2 38503 cdlemk34 38851 cdlemn11pre 39151 dihord2pre 39166 |
Copyright terms: Public domain | W3C validator |