| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3014 po2nr 5560 fliftfund 7288 frfi 9232 fin33i 10322 axdc3lem4 10406 iscatd 17634 isfuncd 17827 isposd 18283 pospropd 18286 imasmnd2 18701 grpinveu 18906 grpid 18907 grpasscan1 18933 imasgrp2 18987 dmdprdd 19931 pgpfac1lem5 20011 imasrng 20086 imasring 20239 islmodd 20772 lmodvsghm 20829 islssd 20841 islmhm2 20945 mulgghm2 21386 isphld 21563 riinopn 22795 ordtbaslem 23075 subbascn 23141 haust1 23239 isnrm2 23245 isnrm3 23246 lmmo 23267 nllyidm 23376 tx1stc 23537 filin 23741 filtop 23742 isfil2 23743 infil 23750 fgfil 23762 isufil2 23795 ufileu 23806 filufint 23807 flimopn 23862 flimrest 23870 isxmetd 24214 met2ndc 24411 icccmplem2 24712 lmmbr 25158 cfil3i 25169 equivcfil 25199 bcthlem5 25228 volfiniun 25448 dvidlem 25816 ulmdvlem3 26311 ax5seg 28865 axcontlem4 28894 axcont 28903 grporcan 30447 grpoinveu 30448 grpoid 30449 cvxpconn 35229 cvxsconn 35230 mclsax 35556 mclsppslem 35570 r1peuqusdeg1 35630 broutsideof2 36110 nn0prpwlem 36310 fgmin 36358 poimirlem27 37641 poimirlem29 37643 poimirlem31 37645 cntotbnd 37790 heiborlem6 37810 heiborlem10 37814 rngonegmn1l 37935 rngonegmn1r 37936 rngoneglmul 37937 rngonegrmul 37938 crngm23 37996 prnc 38061 pridlc3 38067 dmncan1 38070 lsmsat 39001 eqlkr 39092 llncmp 39516 2at0mat0 39519 llncvrlpln 39552 lplncmp 39556 lplnexllnN 39558 lplncvrlvol 39610 lvolcmp 39611 linepsubN 39746 pmapsub 39762 paddasslem16 39829 pmodlem2 39841 lhp2lt 39995 ltrneq2 40142 cdlemf2 40556 cdlemk34 40904 cdlemn11pre 41204 dihord2pre 41219 onexoegt 43233 clnbgrssedg 47841 clnbgrgrimlem 47933 grimgrtri 47948 |
| Copyright terms: Public domain | W3C validator |