| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3017 po2nr 5533 fliftfund 7242 frfi 9164 fin33i 10255 axdc3lem4 10339 iscatd 17574 isfuncd 17767 isposd 18223 pospropd 18226 imasmnd2 18677 grpinveu 18882 grpid 18883 grpasscan1 18909 imasgrp2 18963 dmdprdd 19908 pgpfac1lem5 19988 imasrng 20090 imasring 20243 islmodd 20794 lmodvsghm 20851 islssd 20863 islmhm2 20967 mulgghm2 21408 isphld 21586 riinopn 22818 ordtbaslem 23098 subbascn 23164 haust1 23262 isnrm2 23268 isnrm3 23269 lmmo 23290 nllyidm 23399 tx1stc 23560 filin 23764 filtop 23765 isfil2 23766 infil 23773 fgfil 23785 isufil2 23818 ufileu 23829 filufint 23830 flimopn 23885 flimrest 23893 isxmetd 24236 met2ndc 24433 icccmplem2 24734 lmmbr 25180 cfil3i 25191 equivcfil 25221 bcthlem5 25250 volfiniun 25470 dvidlem 25838 ulmdvlem3 26333 ax5seg 28911 axcontlem4 28940 axcont 28949 grporcan 30490 grpoinveu 30491 grpoid 30492 cvxpconn 35278 cvxsconn 35279 mclsax 35605 mclsppslem 35619 r1peuqusdeg1 35679 broutsideof2 36156 nn0prpwlem 36356 fgmin 36404 poimirlem27 37687 poimirlem29 37689 poimirlem31 37691 cntotbnd 37836 heiborlem6 37856 heiborlem10 37860 rngonegmn1l 37981 rngonegmn1r 37982 rngoneglmul 37983 rngonegrmul 37984 crngm23 38042 prnc 38107 pridlc3 38113 dmncan1 38116 lsmsat 39047 eqlkr 39138 llncmp 39561 2at0mat0 39564 llncvrlpln 39597 lplncmp 39601 lplnexllnN 39603 lplncvrlvol 39655 lvolcmp 39656 linepsubN 39791 pmapsub 39807 paddasslem16 39874 pmodlem2 39886 lhp2lt 40040 ltrneq2 40187 cdlemf2 40601 cdlemk34 40949 cdlemn11pre 41249 dihord2pre 41264 onexoegt 43277 clnbgrssedg 47872 clnbgrgrimlem 47964 grimgrtri 47980 |
| Copyright terms: Public domain | W3C validator |