![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version |
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | 3expd 1352 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anassrs 1359 pm2.61da3ne 3028 po2nr 5610 fliftfund 7332 frfi 9318 fin33i 10406 axdc3lem4 10490 iscatd 17717 isfuncd 17915 isposd 18380 pospropd 18384 imasmnd2 18799 grpinveu 19004 grpid 19005 grpasscan1 19031 imasgrp2 19085 dmdprdd 20033 pgpfac1lem5 20113 imasrng 20194 imasring 20343 islmodd 20880 lmodvsghm 20937 islssd 20950 islmhm2 21054 mulgghm2 21504 isphld 21689 riinopn 22929 ordtbaslem 23211 subbascn 23277 haust1 23375 isnrm2 23381 isnrm3 23382 lmmo 23403 nllyidm 23512 tx1stc 23673 filin 23877 filtop 23878 isfil2 23879 infil 23886 fgfil 23898 isufil2 23931 ufileu 23942 filufint 23943 flimopn 23998 flimrest 24006 isxmetd 24351 met2ndc 24551 icccmplem2 24858 lmmbr 25305 cfil3i 25316 equivcfil 25346 bcthlem5 25375 volfiniun 25595 dvidlem 25964 ulmdvlem3 26459 ax5seg 28967 axcontlem4 28996 axcont 29005 grporcan 30546 grpoinveu 30547 grpoid 30548 cvxpconn 35226 cvxsconn 35227 mclsax 35553 mclsppslem 35567 r1peuqusdeg1 35627 broutsideof2 36103 nn0prpwlem 36304 fgmin 36352 poimirlem27 37633 poimirlem29 37635 poimirlem31 37637 cntotbnd 37782 heiborlem6 37802 heiborlem10 37806 rngonegmn1l 37927 rngonegmn1r 37928 rngoneglmul 37929 rngonegrmul 37930 crngm23 37988 prnc 38053 pridlc3 38059 dmncan1 38062 lsmsat 38989 eqlkr 39080 llncmp 39504 2at0mat0 39507 llncvrlpln 39540 lplncmp 39544 lplnexllnN 39546 lplncvrlvol 39598 lvolcmp 39599 linepsubN 39734 pmapsub 39750 paddasslem16 39817 pmodlem2 39829 lhp2lt 39983 ltrneq2 40130 cdlemf2 40544 cdlemk34 40892 cdlemn11pre 41192 dihord2pre 41207 onexoegt 43232 clnbgrssedg 47764 clnbgrgrimlem 47838 grimgrtri 47851 |
Copyright terms: Public domain | W3C validator |