| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3015 po2nr 5563 fliftfund 7291 frfi 9239 fin33i 10329 axdc3lem4 10413 iscatd 17641 isfuncd 17834 isposd 18290 pospropd 18293 imasmnd2 18708 grpinveu 18913 grpid 18914 grpasscan1 18940 imasgrp2 18994 dmdprdd 19938 pgpfac1lem5 20018 imasrng 20093 imasring 20246 islmodd 20779 lmodvsghm 20836 islssd 20848 islmhm2 20952 mulgghm2 21393 isphld 21570 riinopn 22802 ordtbaslem 23082 subbascn 23148 haust1 23246 isnrm2 23252 isnrm3 23253 lmmo 23274 nllyidm 23383 tx1stc 23544 filin 23748 filtop 23749 isfil2 23750 infil 23757 fgfil 23769 isufil2 23802 ufileu 23813 filufint 23814 flimopn 23869 flimrest 23877 isxmetd 24221 met2ndc 24418 icccmplem2 24719 lmmbr 25165 cfil3i 25176 equivcfil 25206 bcthlem5 25235 volfiniun 25455 dvidlem 25823 ulmdvlem3 26318 ax5seg 28872 axcontlem4 28901 axcont 28910 grporcan 30454 grpoinveu 30455 grpoid 30456 cvxpconn 35236 cvxsconn 35237 mclsax 35563 mclsppslem 35577 r1peuqusdeg1 35637 broutsideof2 36117 nn0prpwlem 36317 fgmin 36365 poimirlem27 37648 poimirlem29 37650 poimirlem31 37652 cntotbnd 37797 heiborlem6 37817 heiborlem10 37821 rngonegmn1l 37942 rngonegmn1r 37943 rngoneglmul 37944 rngonegrmul 37945 crngm23 38003 prnc 38068 pridlc3 38074 dmncan1 38077 lsmsat 39008 eqlkr 39099 llncmp 39523 2at0mat0 39526 llncvrlpln 39559 lplncmp 39563 lplnexllnN 39565 lplncvrlvol 39617 lvolcmp 39618 linepsubN 39753 pmapsub 39769 paddasslem16 39836 pmodlem2 39848 lhp2lt 40002 ltrneq2 40149 cdlemf2 40563 cdlemk34 40911 cdlemn11pre 41211 dihord2pre 41226 onexoegt 43240 clnbgrssedg 47845 clnbgrgrimlem 47937 grimgrtri 47952 |
| Copyright terms: Public domain | W3C validator |