| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3014 po2nr 5553 fliftfund 7270 frfi 9208 fin33i 10298 axdc3lem4 10382 iscatd 17610 isfuncd 17803 isposd 18259 pospropd 18262 imasmnd2 18677 grpinveu 18882 grpid 18883 grpasscan1 18909 imasgrp2 18963 dmdprdd 19907 pgpfac1lem5 19987 imasrng 20062 imasring 20215 islmodd 20748 lmodvsghm 20805 islssd 20817 islmhm2 20921 mulgghm2 21362 isphld 21539 riinopn 22771 ordtbaslem 23051 subbascn 23117 haust1 23215 isnrm2 23221 isnrm3 23222 lmmo 23243 nllyidm 23352 tx1stc 23513 filin 23717 filtop 23718 isfil2 23719 infil 23726 fgfil 23738 isufil2 23771 ufileu 23782 filufint 23783 flimopn 23838 flimrest 23846 isxmetd 24190 met2ndc 24387 icccmplem2 24688 lmmbr 25134 cfil3i 25145 equivcfil 25175 bcthlem5 25204 volfiniun 25424 dvidlem 25792 ulmdvlem3 26287 ax5seg 28841 axcontlem4 28870 axcont 28879 grporcan 30420 grpoinveu 30421 grpoid 30422 cvxpconn 35202 cvxsconn 35203 mclsax 35529 mclsppslem 35543 r1peuqusdeg1 35603 broutsideof2 36083 nn0prpwlem 36283 fgmin 36331 poimirlem27 37614 poimirlem29 37616 poimirlem31 37618 cntotbnd 37763 heiborlem6 37783 heiborlem10 37787 rngonegmn1l 37908 rngonegmn1r 37909 rngoneglmul 37910 rngonegrmul 37911 crngm23 37969 prnc 38034 pridlc3 38040 dmncan1 38043 lsmsat 38974 eqlkr 39065 llncmp 39489 2at0mat0 39492 llncvrlpln 39525 lplncmp 39529 lplnexllnN 39531 lplncvrlvol 39583 lvolcmp 39584 linepsubN 39719 pmapsub 39735 paddasslem16 39802 pmodlem2 39814 lhp2lt 39968 ltrneq2 40115 cdlemf2 40529 cdlemk34 40877 cdlemn11pre 41177 dihord2pre 41192 onexoegt 43206 clnbgrssedg 47814 clnbgrgrimlem 47906 grimgrtri 47921 |
| Copyright terms: Public domain | W3C validator |