| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version | ||
| Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| 3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | 3expd 1354 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anassrs 1361 pm2.61da3ne 3018 po2nr 5543 fliftfund 7256 frfi 9180 fin33i 10271 axdc3lem4 10355 iscatd 17587 isfuncd 17780 isposd 18236 pospropd 18239 imasmnd2 18690 grpinveu 18895 grpid 18896 grpasscan1 18922 imasgrp2 18976 dmdprdd 19921 pgpfac1lem5 20001 imasrng 20103 imasring 20257 islmodd 20808 lmodvsghm 20865 islssd 20877 islmhm2 20981 mulgghm2 21422 isphld 21600 riinopn 22843 ordtbaslem 23123 subbascn 23189 haust1 23287 isnrm2 23293 isnrm3 23294 lmmo 23315 nllyidm 23424 tx1stc 23585 filin 23789 filtop 23790 isfil2 23791 infil 23798 fgfil 23810 isufil2 23843 ufileu 23854 filufint 23855 flimopn 23910 flimrest 23918 isxmetd 24261 met2ndc 24458 icccmplem2 24759 lmmbr 25205 cfil3i 25216 equivcfil 25246 bcthlem5 25275 volfiniun 25495 dvidlem 25863 ulmdvlem3 26358 ax5seg 28937 axcontlem4 28966 axcont 28975 grporcan 30519 grpoinveu 30520 grpoid 30521 cvxpconn 35358 cvxsconn 35359 mclsax 35685 mclsppslem 35699 r1peuqusdeg1 35759 broutsideof2 36238 nn0prpwlem 36438 fgmin 36486 poimirlem27 37760 poimirlem29 37762 poimirlem31 37764 cntotbnd 37909 heiborlem6 37929 heiborlem10 37933 rngonegmn1l 38054 rngonegmn1r 38055 rngoneglmul 38056 rngonegrmul 38057 crngm23 38115 prnc 38180 pridlc3 38186 dmncan1 38189 lsmsat 39180 eqlkr 39271 llncmp 39694 2at0mat0 39697 llncvrlpln 39730 lplncmp 39734 lplnexllnN 39736 lplncvrlvol 39788 lvolcmp 39789 linepsubN 39924 pmapsub 39940 paddasslem16 40007 pmodlem2 40019 lhp2lt 40173 ltrneq2 40320 cdlemf2 40734 cdlemk34 41082 cdlemn11pre 41382 dihord2pre 41397 onexoegt 43401 clnbgrssedg 48003 clnbgrgrimlem 48095 grimgrtri 48111 |
| Copyright terms: Public domain | W3C validator |