Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3exp2 | Structured version Visualization version GIF version |
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3exp2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
3exp2 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | 3expd 1351 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anassrs 1358 pm2.61da3ne 3032 po2nr 5513 fliftfund 7169 frfi 9005 fin33i 10072 axdc3lem4 10156 iscatd 17326 isfuncd 17524 isposd 17985 pospropd 17989 imasmnd2 18366 grpinveu 18558 grpid 18559 grpasscan1 18582 imasgrp2 18634 dmdprdd 19546 pgpfac1lem5 19626 imasring 19802 islmodd 20073 lmodvsghm 20128 islssd 20141 islmhm2 20244 mulgghm2 20642 isphld 20803 psrbaglefiOLD 21080 riinopn 22001 ordtbaslem 22283 subbascn 22349 haust1 22447 isnrm2 22453 isnrm3 22454 lmmo 22475 nllyidm 22584 tx1stc 22745 filin 22949 filtop 22950 isfil2 22951 infil 22958 fgfil 22970 isufil2 23003 ufileu 23014 filufint 23015 flimopn 23070 flimrest 23078 isxmetd 23423 met2ndc 23623 icccmplem2 23930 lmmbr 24365 cfil3i 24376 equivcfil 24406 bcthlem5 24435 volfiniun 24654 dvidlem 25022 ulmdvlem3 25504 ax5seg 27249 axcontlem4 27278 axcont 27287 grporcan 28821 grpoinveu 28822 grpoid 28823 cvxpconn 33146 cvxsconn 33147 mclsax 33473 mclsppslem 33487 broutsideof2 34393 nn0prpwlem 34480 fgmin 34528 poimirlem27 35773 poimirlem29 35775 poimirlem31 35777 cntotbnd 35923 heiborlem6 35943 heiborlem10 35947 rngonegmn1l 36068 rngonegmn1r 36069 rngoneglmul 36070 rngonegrmul 36071 crngm23 36129 prnc 36194 pridlc3 36200 dmncan1 36203 lsmsat 36991 eqlkr 37082 llncmp 37505 2at0mat0 37508 llncvrlpln 37541 lplncmp 37545 lplnexllnN 37547 lplncvrlvol 37599 lvolcmp 37600 linepsubN 37735 pmapsub 37751 paddasslem16 37818 pmodlem2 37830 lhp2lt 37984 ltrneq2 38131 cdlemf2 38545 cdlemk34 38893 cdlemn11pre 39193 dihord2pre 39208 |
Copyright terms: Public domain | W3C validator |