MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq3dd Structured version   Visualization version   GIF version

Theorem feq3dd 6638
Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
feq3dd.eq (𝜑𝐵 = 𝐶)
feq3dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq3dd (𝜑𝐹:𝐴𝐶)

Proof of Theorem feq3dd
StepHypRef Expression
1 feq3dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq3dd.eq . . 3 (𝜑𝐵 = 𝐶)
32feq3d 6636 . 2 (𝜑 → (𝐹:𝐴𝐵𝐹:𝐴𝐶))
41, 3mpbid 232 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914  df-f 6485
This theorem is referenced by:  cofidf2a  49228
  Copyright terms: Public domain W3C validator