| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > feq2dd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025.) |
| Ref | Expression |
|---|---|
| feq2dd.eq | ⊢ (𝜑 → 𝐴 = 𝐵) |
| feq2dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Ref | Expression |
|---|---|
| feq2dd | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 2 | feq2dd.eq | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | feq2d 6680 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⟶wf 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6522 df-f 6523 |
| This theorem is referenced by: 1arithidomlem2 33515 1arithidom 33516 |
| Copyright terms: Public domain | W3C validator |