MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq2dd Structured version   Visualization version   GIF version

Theorem feq2dd 6637
Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
feq2dd.eq (𝜑𝐴 = 𝐵)
feq2dd.f (𝜑𝐹:𝐴𝐶)
Assertion
Ref Expression
feq2dd (𝜑𝐹:𝐵𝐶)

Proof of Theorem feq2dd
StepHypRef Expression
1 feq2dd.f . 2 (𝜑𝐹:𝐴𝐶)
2 feq2dd.eq . . 3 (𝜑𝐴 = 𝐵)
32feq2d 6635 . 2 (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
41, 3mpbid 232 1 (𝜑𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-fn 6484  df-f 6485
This theorem is referenced by:  1arithidomlem2  33501  1arithidom  33502  oppfdiag1  49525  oppfdiag  49527
  Copyright terms: Public domain W3C validator