![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > feq2dd | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025.) |
Ref | Expression |
---|---|
feq2dd.eq | ⊢ (𝜑 → 𝐴 = 𝐵) |
feq2dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Ref | Expression |
---|---|
feq2dd | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
2 | feq2dd.eq | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | feq2d 6735 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⟶wf 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6578 df-f 6579 |
This theorem is referenced by: 1arithidomlem2 33531 1arithidom 33532 |
Copyright terms: Public domain | W3C validator |