| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6636 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 |
| This theorem is referenced by: feq3dd 6643 feq123d 6645 fsn2 7074 fsng 7075 fsnunf 7125 funcres2b 17822 funcres2 17823 funcres2c 17828 catciso 18036 hofcl 18183 yonedalem4c 18201 yonedalem3b 18203 yonedainv 18205 gsumress 18574 resmgmhm2b 18605 resmhm2b 18714 pwsdiagmhm 18723 frmdup3lem 18758 frmdup3 18759 isghmOLD 19113 frgpup3lem 19674 gsumzsubmcl 19815 dmdprd 19897 zrtermorngc 20546 zrtermoringc 20578 imadrhmcl 20700 rngqiprngghm 21224 frlmup2 21724 scmatghm 22436 scmatmhm 22437 mdetdiaglem 22501 cnpf2 23153 2ndcctbss 23358 1stcelcls 23364 uptx 23528 txcn 23529 tsmssubm 24046 cnextucn 24206 pi1addf 24963 caufval 25191 equivcau 25216 lmcau 25229 plypf1 26133 coef2 26152 ulmval 26305 uhgr0vb 29035 uhgrun 29037 uhgrstrrepe 29041 isumgrs 29059 upgrun 29081 umgrun 29083 wksfval 29573 wlkres 29632 ajfval 30771 chscllem4 31602 rlocf1 33223 imasmhm 33301 imasghm 33302 imasrhm 33303 lindfpropd 33329 ply1degltdimlem 33594 fedgmullem1 33601 rrhf 33964 sibff 34303 sibfof 34307 orvcval4 34428 bj-finsumval0 37258 matunitlindflem2 37596 poimirlem9 37608 isbnd3 37763 prdsbnd 37772 heibor 37800 elghomlem1OLD 37864 aks6d1c6lem2 42144 aks6d1c6lem3 42145 aks6d1c6isolem2 42148 aks6d1c6lem5 42150 evlsvvval 42536 cnfsmf 46722 upwlksfval 48120 |
| Copyright terms: Public domain | W3C validator |