Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq3 6583 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 |
This theorem is referenced by: feq123d 6589 fsn2 7008 fsng 7009 fsnunf 7057 funcres2b 17612 funcres2 17613 funcres2c 17617 catciso 17826 hofcl 17977 yonedalem4c 17995 yonedalem3b 17997 yonedainv 17999 gsumress 18366 resmhm2b 18461 pwsdiagmhm 18469 frmdup3lem 18505 frmdup3 18506 isghm 18834 frgpup3lem 19383 gsumzsubmcl 19519 dmdprd 19601 frlmup2 21006 scmatghm 21682 scmatmhm 21683 mdetdiaglem 21747 cnpf2 22401 2ndcctbss 22606 1stcelcls 22612 uptx 22776 txcn 22777 tsmssubm 23294 cnextucn 23455 pi1addf 24210 caufval 24439 equivcau 24464 lmcau 24477 plypf1 25373 coef2 25392 ulmval 25539 uhgr0vb 27442 uhgrun 27444 uhgrstrrepe 27448 isumgrs 27466 upgrun 27488 umgrun 27490 wksfval 27976 wlkres 28038 ajfval 29171 chscllem4 30002 lindfpropd 31576 fedgmullem1 31710 rrhf 31948 sibff 32303 sibfof 32307 orvcval4 32427 bj-finsumval0 35456 matunitlindflem2 35774 poimirlem9 35786 isbnd3 35942 prdsbnd 35951 heibor 35979 elghomlem1OLD 36043 selvval2lem4 40228 cnfsmf 44276 upwlksfval 45297 resmgmhm2b 45354 zrtermorngc 45559 zrtermoringc 45628 |
Copyright terms: Public domain | W3C validator |