![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq3 6730 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 |
This theorem is referenced by: feq123d 6736 fsn2 7170 fsng 7171 fsnunf 7219 funcres2b 17961 funcres2 17962 funcres2c 17968 catciso 18178 hofcl 18329 yonedalem4c 18347 yonedalem3b 18349 yonedainv 18351 gsumress 18720 resmgmhm2b 18751 resmhm2b 18857 pwsdiagmhm 18866 frmdup3lem 18901 frmdup3 18902 isghmOLD 19256 frgpup3lem 19819 gsumzsubmcl 19960 dmdprd 20042 zrtermorngc 20665 zrtermoringc 20697 imadrhmcl 20820 rngqiprngghm 21332 frlmup2 21842 scmatghm 22560 scmatmhm 22561 mdetdiaglem 22625 cnpf2 23279 2ndcctbss 23484 1stcelcls 23490 uptx 23654 txcn 23655 tsmssubm 24172 cnextucn 24333 pi1addf 25099 caufval 25328 equivcau 25353 lmcau 25366 plypf1 26271 coef2 26290 ulmval 26441 uhgr0vb 29107 uhgrun 29109 uhgrstrrepe 29113 isumgrs 29131 upgrun 29153 umgrun 29155 wksfval 29645 wlkres 29706 ajfval 30841 chscllem4 31672 feq3dd 32643 rlocf1 33245 imasmhm 33347 imasghm 33348 imasrhm 33349 lindfpropd 33375 ply1degltdimlem 33635 fedgmullem1 33642 rrhf 33944 sibff 34301 sibfof 34305 orvcval4 34425 bj-finsumval0 37251 matunitlindflem2 37577 poimirlem9 37589 isbnd3 37744 prdsbnd 37753 heibor 37781 elghomlem1OLD 37845 aks6d1c6lem2 42128 aks6d1c6lem3 42129 aks6d1c6isolem2 42132 aks6d1c6lem5 42134 evlsvvval 42518 cnfsmf 46661 upwlksfval 47858 |
Copyright terms: Public domain | W3C validator |