| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6636 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6490 |
| This theorem is referenced by: feq3dd 6643 feq123d 6645 fsn2 7075 fsng 7076 fsnunf 7125 funcres2b 17806 funcres2 17807 funcres2c 17812 catciso 18020 hofcl 18167 yonedalem4c 18185 yonedalem3b 18187 yonedainv 18189 gsumress 18592 resmgmhm2b 18623 resmhm2b 18732 pwsdiagmhm 18741 frmdup3lem 18776 frmdup3 18777 isghmOLD 19130 frgpup3lem 19691 gsumzsubmcl 19832 dmdprd 19914 zrtermorngc 20560 zrtermoringc 20592 imadrhmcl 20714 rngqiprngghm 21238 frlmup2 21738 scmatghm 22449 scmatmhm 22450 mdetdiaglem 22514 cnpf2 23166 2ndcctbss 23371 1stcelcls 23377 uptx 23541 txcn 23542 tsmssubm 24059 cnextucn 24218 pi1addf 24975 caufval 25203 equivcau 25228 lmcau 25241 plypf1 26145 coef2 26164 ulmval 26317 uhgr0vb 29052 uhgrun 29054 uhgrstrrepe 29058 isumgrs 29076 upgrun 29098 umgrun 29100 wksfval 29590 wlkres 29649 ajfval 30791 chscllem4 31622 rlocf1 33247 imasmhm 33326 imasghm 33327 imasrhm 33328 lindfpropd 33354 ply1degltdimlem 33656 fedgmullem1 33663 rrhf 34032 sibff 34370 sibfof 34374 orvcval4 34495 bj-finsumval0 37350 matunitlindflem2 37677 poimirlem9 37689 isbnd3 37844 prdsbnd 37853 heibor 37881 elghomlem1OLD 37945 aks6d1c6lem2 42284 aks6d1c6lem3 42285 aks6d1c6isolem2 42288 aks6d1c6lem5 42290 evlsvvval 42681 cnfsmf 46862 upwlksfval 48259 |
| Copyright terms: Public domain | W3C validator |