| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6671 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 |
| This theorem is referenced by: feq3dd 6678 feq123d 6680 fsn2 7111 fsng 7112 fsnunf 7162 funcres2b 17866 funcres2 17867 funcres2c 17872 catciso 18080 hofcl 18227 yonedalem4c 18245 yonedalem3b 18247 yonedainv 18249 gsumress 18616 resmgmhm2b 18647 resmhm2b 18756 pwsdiagmhm 18765 frmdup3lem 18800 frmdup3 18801 isghmOLD 19155 frgpup3lem 19714 gsumzsubmcl 19855 dmdprd 19937 zrtermorngc 20559 zrtermoringc 20591 imadrhmcl 20713 rngqiprngghm 21216 frlmup2 21715 scmatghm 22427 scmatmhm 22428 mdetdiaglem 22492 cnpf2 23144 2ndcctbss 23349 1stcelcls 23355 uptx 23519 txcn 23520 tsmssubm 24037 cnextucn 24197 pi1addf 24954 caufval 25182 equivcau 25207 lmcau 25220 plypf1 26124 coef2 26143 ulmval 26296 uhgr0vb 29006 uhgrun 29008 uhgrstrrepe 29012 isumgrs 29030 upgrun 29052 umgrun 29054 wksfval 29544 wlkres 29605 ajfval 30745 chscllem4 31576 rlocf1 33231 imasmhm 33332 imasghm 33333 imasrhm 33334 lindfpropd 33360 ply1degltdimlem 33625 fedgmullem1 33632 rrhf 33995 sibff 34334 sibfof 34338 orvcval4 34459 bj-finsumval0 37280 matunitlindflem2 37618 poimirlem9 37630 isbnd3 37785 prdsbnd 37794 heibor 37822 elghomlem1OLD 37886 aks6d1c6lem2 42166 aks6d1c6lem3 42167 aks6d1c6isolem2 42170 aks6d1c6lem5 42172 evlsvvval 42558 cnfsmf 46745 upwlksfval 48127 |
| Copyright terms: Public domain | W3C validator |