| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6687 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6534 |
| This theorem is referenced by: feq123d 6694 fsn2 7125 fsng 7126 fsnunf 7176 funcres2b 17908 funcres2 17909 funcres2c 17914 catciso 18122 hofcl 18269 yonedalem4c 18287 yonedalem3b 18289 yonedainv 18291 gsumress 18658 resmgmhm2b 18689 resmhm2b 18798 pwsdiagmhm 18807 frmdup3lem 18842 frmdup3 18843 isghmOLD 19197 frgpup3lem 19756 gsumzsubmcl 19897 dmdprd 19979 zrtermorngc 20601 zrtermoringc 20633 imadrhmcl 20755 rngqiprngghm 21258 frlmup2 21757 scmatghm 22469 scmatmhm 22470 mdetdiaglem 22534 cnpf2 23186 2ndcctbss 23391 1stcelcls 23397 uptx 23561 txcn 23562 tsmssubm 24079 cnextucn 24239 pi1addf 24996 caufval 25225 equivcau 25250 lmcau 25263 plypf1 26167 coef2 26186 ulmval 26339 uhgr0vb 28997 uhgrun 28999 uhgrstrrepe 29003 isumgrs 29021 upgrun 29043 umgrun 29045 wksfval 29535 wlkres 29596 ajfval 30736 chscllem4 31567 feq3dd 32547 rlocf1 33214 imasmhm 33315 imasghm 33316 imasrhm 33317 lindfpropd 33343 ply1degltdimlem 33608 fedgmullem1 33615 rrhf 33975 sibff 34314 sibfof 34318 orvcval4 34439 bj-finsumval0 37249 matunitlindflem2 37587 poimirlem9 37599 isbnd3 37754 prdsbnd 37763 heibor 37791 elghomlem1OLD 37855 aks6d1c6lem2 42130 aks6d1c6lem3 42131 aks6d1c6isolem2 42134 aks6d1c6lem5 42136 evlsvvval 42533 cnfsmf 46717 upwlksfval 48058 |
| Copyright terms: Public domain | W3C validator |