Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq3 6567 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 |
This theorem is referenced by: feq123d 6573 fsn2 6990 fsng 6991 fsnunf 7039 funcres2b 17528 funcres2 17529 funcres2c 17533 catciso 17742 hofcl 17893 yonedalem4c 17911 yonedalem3b 17913 yonedainv 17915 gsumress 18281 resmhm2b 18376 pwsdiagmhm 18384 frmdup3lem 18420 frmdup3 18421 isghm 18749 frgpup3lem 19298 gsumzsubmcl 19434 dmdprd 19516 frlmup2 20916 scmatghm 21590 scmatmhm 21591 mdetdiaglem 21655 cnpf2 22309 2ndcctbss 22514 1stcelcls 22520 uptx 22684 txcn 22685 tsmssubm 23202 cnextucn 23363 pi1addf 24116 caufval 24344 equivcau 24369 lmcau 24382 plypf1 25278 coef2 25297 ulmval 25444 uhgr0vb 27345 uhgrun 27347 uhgrstrrepe 27351 isumgrs 27369 upgrun 27391 umgrun 27393 wksfval 27879 wlkres 27940 ajfval 29072 chscllem4 29903 lindfpropd 31478 fedgmullem1 31612 rrhf 31848 sibff 32203 sibfof 32207 orvcval4 32327 bj-finsumval0 35383 matunitlindflem2 35701 poimirlem9 35713 isbnd3 35869 prdsbnd 35878 heibor 35906 elghomlem1OLD 35970 selvval2lem4 40154 cnfsmf 44163 upwlksfval 45185 resmgmhm2b 45242 zrtermorngc 45447 zrtermoringc 45516 |
Copyright terms: Public domain | W3C validator |