| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6668 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 |
| This theorem is referenced by: feq3dd 6675 feq123d 6677 fsn2 7108 fsng 7109 fsnunf 7159 funcres2b 17859 funcres2 17860 funcres2c 17865 catciso 18073 hofcl 18220 yonedalem4c 18238 yonedalem3b 18240 yonedainv 18242 gsumress 18609 resmgmhm2b 18640 resmhm2b 18749 pwsdiagmhm 18758 frmdup3lem 18793 frmdup3 18794 isghmOLD 19148 frgpup3lem 19707 gsumzsubmcl 19848 dmdprd 19930 zrtermorngc 20552 zrtermoringc 20584 imadrhmcl 20706 rngqiprngghm 21209 frlmup2 21708 scmatghm 22420 scmatmhm 22421 mdetdiaglem 22485 cnpf2 23137 2ndcctbss 23342 1stcelcls 23348 uptx 23512 txcn 23513 tsmssubm 24030 cnextucn 24190 pi1addf 24947 caufval 25175 equivcau 25200 lmcau 25213 plypf1 26117 coef2 26136 ulmval 26289 uhgr0vb 28999 uhgrun 29001 uhgrstrrepe 29005 isumgrs 29023 upgrun 29045 umgrun 29047 wksfval 29537 wlkres 29598 ajfval 30738 chscllem4 31569 rlocf1 33224 imasmhm 33325 imasghm 33326 imasrhm 33327 lindfpropd 33353 ply1degltdimlem 33618 fedgmullem1 33625 rrhf 33988 sibff 34327 sibfof 34331 orvcval4 34452 bj-finsumval0 37273 matunitlindflem2 37611 poimirlem9 37623 isbnd3 37778 prdsbnd 37787 heibor 37815 elghomlem1OLD 37879 aks6d1c6lem2 42159 aks6d1c6lem3 42160 aks6d1c6isolem2 42163 aks6d1c6lem5 42165 evlsvvval 42551 cnfsmf 46738 upwlksfval 48123 |
| Copyright terms: Public domain | W3C validator |