| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | feq3 6631 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 df-f 6485 |
| This theorem is referenced by: feq3dd 6638 feq123d 6640 fsn2 7069 fsng 7070 fsnunf 7119 funcres2b 17801 funcres2 17802 funcres2c 17807 catciso 18015 hofcl 18162 yonedalem4c 18180 yonedalem3b 18182 yonedainv 18184 gsumress 18587 resmgmhm2b 18618 resmhm2b 18727 pwsdiagmhm 18736 frmdup3lem 18771 frmdup3 18772 isghmOLD 19126 frgpup3lem 19687 gsumzsubmcl 19828 dmdprd 19910 zrtermorngc 20556 zrtermoringc 20588 imadrhmcl 20710 rngqiprngghm 21234 frlmup2 21734 scmatghm 22446 scmatmhm 22447 mdetdiaglem 22511 cnpf2 23163 2ndcctbss 23368 1stcelcls 23374 uptx 23538 txcn 23539 tsmssubm 24056 cnextucn 24215 pi1addf 24972 caufval 25200 equivcau 25225 lmcau 25238 plypf1 26142 coef2 26161 ulmval 26314 uhgr0vb 29048 uhgrun 29050 uhgrstrrepe 29054 isumgrs 29072 upgrun 29094 umgrun 29096 wksfval 29586 wlkres 29645 ajfval 30784 chscllem4 31615 rlocf1 33235 imasmhm 33314 imasghm 33315 imasrhm 33316 lindfpropd 33342 ply1degltdimlem 33630 fedgmullem1 33637 rrhf 34006 sibff 34344 sibfof 34348 orvcval4 34469 bj-finsumval0 37318 matunitlindflem2 37656 poimirlem9 37668 isbnd3 37823 prdsbnd 37832 heibor 37860 elghomlem1OLD 37924 aks6d1c6lem2 42203 aks6d1c6lem3 42204 aks6d1c6isolem2 42207 aks6d1c6lem5 42209 evlsvvval 42595 cnfsmf 46777 upwlksfval 48165 |
| Copyright terms: Public domain | W3C validator |